Page 217 - FUNDAMENTALS OF COMPUTER
P. 217

NPP













                  NPP               Number System, Boolean Algebra and Logic Circuits              217


                  (b) The expression contains two  maxterms   (b) ì`§OH$ _| Xmo _oŠñQ>_© h¢ Omo {ZåZ g§»`mAm| Ho$ gmnoj
                      which corresponds to a combination as fol-  h¢ …
                      lows:

                                                   (A+ B+ C )     010
                                                              →
                                                   (   B+ C )A+    011
                                                              →
                      Putting  0’s for these terms, the three vari-  BZ g§»`mAm| Ho$ ñWmZ na eyÝ` VWm AÝ` Ho$ ñWmZ
                  able Karnaugh map would be:                 na 1 aIZo na {ZåZmZwgma K-_on àmßV hmoJm:

                                                 A  B C  00  01    11    10



                                                 0    1      1     0      0


                                                 1    1      1     1      1


                  (c) Two maxterms in the expression F corre-  (c) ì`§OH$ F _| Xmo (01) VWm (11) Ho$ gmnoj h¢ Ÿ&
                      sponds to (01) and (11). Therefore the two  AV… BZHo$ ñWmZ na eyÝ` VWm AÝ` ñWmZm| na 1
                      variable  karnaugh map will be:
                                                                  aIZo  go {ZåZmZwgma K-_on ~ZoJm:
                                                     X    Y  0   1


                                                      0    1     0


                                                      1    1     0


                  (d) The expression                          (d) W =  (P +  Q +  R +  Z ) (P.  +  Q +  R +  Z ) _| Xmo
                      W =  (P +  Q +  R +  Z ) (P.  +  Q +  R +  Z ). It  _oŠgQ>_© VWm Mma Ma h¢ Ÿ& Xmo _oŠgQ>_© {ZåZ g§»`mAm|
                      has four variables and two maxterms         Ho$ gmnoj h¢…
                      which corresponds to:

                                                               →
                                                (P +  Q +  R +  ) Z   (0000 )
                                                (   Q +  R +  Z    ( →  )0111
                                                             )P +
   212   213   214   215   216   217   218   219   220   221   222