Page 217 - FUNDAMENTALS OF COMPUTER
P. 217
NPP
NPP Number System, Boolean Algebra and Logic Circuits 217
(b) The expression contains two maxterms (b) ì`§OH$ _| Xmo _oŠñQ>_© h¢ Omo {ZåZ g§»`mAm| Ho$ gmnoj
which corresponds to a combination as fol- h¢ …
lows:
(A+ B+ C ) 010
→
( B+ C )A+ 011
→
Putting 0’s for these terms, the three vari- BZ g§»`mAm| Ho$ ñWmZ na eyÝ` VWm AÝ` Ho$ ñWmZ
able Karnaugh map would be: na 1 aIZo na {ZåZmZwgma K-_on àmßV hmoJm:
A B C 00 01 11 10
0 1 1 0 0
1 1 1 1 1
(c) Two maxterms in the expression F corre- (c) ì`§OH$ F _| Xmo (01) VWm (11) Ho$ gmnoj h¢ Ÿ&
sponds to (01) and (11). Therefore the two AV… BZHo$ ñWmZ na eyÝ` VWm AÝ` ñWmZm| na 1
variable karnaugh map will be:
aIZo go {ZåZmZwgma K-_on ~ZoJm:
X Y 0 1
0 1 0
1 1 0
(d) The expression (d) W = (P + Q + R + Z ) (P. + Q + R + Z ) _| Xmo
W = (P + Q + R + Z ) (P. + Q + R + Z ). It _oŠgQ>_© VWm Mma Ma h¢ Ÿ& Xmo _oŠgQ>_© {ZåZ g§»`mAm|
has four variables and two maxterms Ho$ gmnoj h¢…
which corresponds to:
→
(P + Q + R + ) Z (0000 )
( Q + R + Z ( → )0111
)P +