Page 203 - FUNDAMENTALS OF COMPUTER
P. 203

NPP













                  NPP               Number System, Boolean Algebra and Logic Circuits              203


                                              A            B            Y
                                               0           0            1
                                               0           1            0
                                               1           0            1
                                               1           1            0
                      There are two 0s in the output. The first ‘0’  AmCQ>nwQ> _| Xmo ñWmZm| na  0 h¡ Ÿ& nhbm  ‘0’ H$m
                  corresponds to (01) therefore the fundamental
                                                              gå~ÝY (01) go h¡ AV: \$ÊS>m_|Q>b g_  (A +  B ) h¡Ÿ&
                  sum is (A +  B ). Similarly, for the second ‘0’ the
                                                              Bgr àH$ma Xygam ‘0’ Ho$ {bE \$ÊS>m_|Q>b g_ _| Xmo _¡ŠgQ>åg©
                  fundamental sum is (A +  B ), Therefore the ex-  (A +  B ) VWm (A +  B ) hm|JoŸ&
                  pression for Y will have two maxterms (A +  B )

                  and (A +  B ).
                      Maxterms are represented by M  Where n      _oŠgQ>_© H$mo M  Ho$ ê$n _| Xem©Vo h¢ Ohm± n ~mBZar
                                                  n
                                                                             n
                  is the decimal equivalent of the corresponding  g§»`m H$m Xe_bd Vwë` h¡ Ÿ& Cnamo³V CXmhaU ‘| nhbr
                  binary number. In the above example the first
                  binary value is the (01), thus the maxterm is M .  ~m¶Zar d¡ë¶y (01) h¡ AV ‘¡³gQ>‘© M h¡& Xÿgar ~m¶Zar
                                                                                          1
                                                          1
                  For the second binary value (11) the maxterm is  d¡ë¶y  (11) h¡ AV… ‘¡³gQ>‘© M h¡& AV… Cnamoº$ Xmo
                                                                                       3
                  M . The above representation leads to the fol-  _oŠgQ>_m] H$mo Bg àH$ma {bIm Om gH$Vm h¡…
                    3
                  lowing equations:
                                               M =  (A +  B ) and  M =  (A +  B )
                                                                 3
                                                1
                       Problem 3.55                                àíZ 3.55
                      For the given Truth Table identify all the  {ZåZ _| gmar _oŠgQ>_²©g nhMmZmo…
                  maxterms:
                                      A           B          C             Z
                                      0           0           0            1
                                      0           0           1            0
                                      0           1           0            1
                                      0           1           1            0
                                      1           0           0            1
                                      1           0           1            1
                                      1           1           0            1
                                      1           1           1            0
                  Solution:                                   hc:
                      There are three 0s in the output therefore  VrZ eyÝ` Ho$ gmnoj VrZ _oŠgQ>_²©g Bg àH$ma h¢…
                  three Maxterms will be there. These are listed
                  below:
                                             M =  (A +  B +  C ),  M =  (A +  B +  C )
                                              1
                                                               3
                      and                            M =  (A +  B +  C )
                                                       7
   198   199   200   201   202   203   204   205   206   207   208