Page 7 - integral tak tentu
P. 7

E-Modul Matematika umum kelas XI –Integral tak tentu – Genap-Haris  Wiharsah, S.Pd


                                                         PEMBELAJARAN


            Mengingat kembali kosep –konsep diferensial atau turunan

                                
                          =        =  −1
                                         
                                         
                                7
                          = 5     = 5 ∙ 7 7−1
                                         
                                                    6
                                                               = 35
                                                 
                                        3
                                                                    2
                                5
                                                           4
                          = 8 + 4        = 40 + 12 
                                                 
                                                 
                                3
                                        2
                                                           2
                          = 4 − 6        = 12 − 12 
                                                 

            Definisi Integral
            Diberikan contoh:
                                           4
                                                                       3
                                                    ′
                             1.  () = 5  maka  () = () = 20
                                                    4
                                                                                          3
                                Sehingga () = 5  adalah anti turunan dari () = 20
                                                  7
                                           5
                                                               ′
                                                                                          6
                                                                                  4
                             2.  () = 3 + 2 + 5 maka  () = () = 15 + 14
                                                                                                     4
                                                                                                             6
                                                           7
                                                    5
                                Sehingga () = 3 + 2 + 5 adalah anti turunan dari () = 15 + 14
                                                  7
                                                                                          6
                                           5
                                                                                  4
                             3.  () = 3 + 2 − 8 maka ′() = () = 15 + 14
                                                           7
                                                                                                             6
                                                    5
                                                                                                     4
                                Sehingga () = 3 + 2 − 8 adalah anti turunan dari () = 15 + 14
                                                                                    7
                                                                             5
                         Dari dua contoh diatas g(x) = f(x) sehingga () = 3 + 2 − 8 juga anti turunan dari
                                     4
                                             6
                         () = 15 + 14
                                    5
                                           7
                         () = 3 + 2 + 5 − 13 atau () = () − 13
                         Jadi secara umum  G(x) = F(x) + c, (c kontanta)








                                                                                                                     3
   2   3   4   5   6   7   8   9   10   11   12