Page 47 - ASBIRES-2017_Preceedings
P. 47

Kaushalya & Francisco



                      Gharbi,  M.,  Quenel,  P.,  Gustave,  J.,         (2015). Forecasting Dengue patient counts
                       Cassadou, S., Ruche, G.L, Girdary, L., &          in a district based on neighboring districts
                       Marrama, L. (2011). Time series analysis          and  rain  fall  via  machine  learning
                       of  dengue  incidence  in  Guadeloupe,            International  Research  Symposium  on
                       French  West  Indies:  Forecasting  models        Engineering     Advancements      SAITM,
                       using climate variables as predictors. BMC        Malabe, Sri Lanka.
                       Infectious Disease.                              OTexts.     (n.d.).    Retrieved     from
                      Gnanapragasam, S. (2016). Modeling and            file://E:/R/8.1Stationarity  and  differen
                       Forecasting  Dengue  Cases  in  the  area  of     cing_OTexts.htm
                       Colombo Municipal Council in Sri Lanka.          Outbreak  News  Today.  (2016).  Retrieved
                       International  Journal  of  Scientific  and       from
                       Research Publications, 6(8).                      http://www.research/Dengue/SriLanka
                      Gnanapragasam, S., & Cooray, T. (2015).           denguetally20,000for2016-Outbreak News
                       Time  Series  Models  to  forecast  Dengue        TodayOutbreak News Today.htm
                       fever  incidences  in  Western  Province  in     Pathirana,  S.,  Masato  Kawabata,  &
                       Sri  Lanka.  8th  International  Research         Goonathilaka,  R.  (2009).  Study  of
                       Conference, KDU. (pp.7).                          potential risk of Dengue disease outbreak
                      Hota,  A.  (2014).  Development  and              in  Sri  Lanka  using  GIS  and  statistical
                       Validation of Statistical and Deterministic       modelling. Journal of Rural and Tropical
                       Models Used to Predict Dengue Fever in            Public Health, 8.
                       Mexico.    Cambridge,      Massachusetts:        Quick-R.     (2014).   Retrieved     from
                       Harvard College.                                  http://www.Quick-R Time Series.htm
                      Kavinga,    H.,   Jayakody,    D.N.,   &         Siriyasatien,  P.,  Phumee,  A.,  Ongruk,  P.,
                       Jayasundara,  D.  (2013).  A  New  Dengue         Jampachaisri,  K.,  &  Kesorn,  K.  (2016).
                       Outbreak Statistical Model using the Time         Analysis of significant factors for dengue.
                       Series  Analysis.  European  International        BMC Bioinformatics.
                       Journal of Science and Technology, 2.            Wongkoon,  S.,    Jaroensutasinee,  M.,  &
                      Munasinghe,  A.,  Fernando,  N.,  &               Jaroensutasinee,  K.  (2011).  Development
                       Premaratne, H. (2012). Simulation Model           of  temporal  modeling  for  prediction  of
                       for  Dengue  Outbreak  Prediction.  5th           dengue infection in Northeastern Thailand.
                       Annual UCSC Research Symposium.                   Asian  Pacific  Journal  of  Tropical
                      Myriam  Gharbi,  &  Philippe  Quene.              Medicine.
                       (2011).  Time  series  analysis  of  dengue      Yien  Ling  Hii,  Huaiping  Zhu,  Nawi  Ng,
                       incidence  in  Guadeloupe,  French  West          Lee  Ching  Ng,  &  Joacim  Rocklo.  (2012,
                       Indies:  Forecasting  models  using  climate      November). Forecast of Dengue Incidence
                       variables  as  predictors.  BMC  Infectious       Using  Temperature  and  Rainfall.  PLOS
                       Disease.                                          Neglected Tropical Diseases, 6(11).
                      Nugaliyadde,    A.,    Somaratne,     G.,
                       Kumarasinghe,  R.,  &  Wikramasinghe,  C.















                                                                     37
   42   43   44   45   46   47   48   49   50   51   52