Page 4 - งานคณิตศาสตร์
P. 4

3. ผลการสอบวิชาคณิตศาสตร์และวิชาเคมีของนักเรียนกลุ่มหนึ่ง ปรากฏว่า


                       1/3 ของนักเรียนทั้งหมดผ่านคณิตศาสตร์ และ 8/15 ของนักเรียนทั้งหมดผ่าน

                       วิชาเคมี ถ้าความน่าจะเป็นของนักเรียนคนหนึ่งในกลุ่มนี้ที่จะสอบผ่านอย่าง


                       มากหนึ่งวิชาเป็น 4/5 แล้ว ความน่าจะเป็นที่เขาจะสอบผ่านอย่างน้อยหนึ่งวิชา


                       เท่ากับข้อใดต่อไปนี้


                       1. 2/3


                       2. 1/15


                       3. 1/5

                       4. 13/15




                       วิธีคิด



                       ให้ M แทนเหตุการณ์ที่นักเรียนสอบวิชาคณิตศาสตร์ผ่าน และ C แทน


                       เหตุการณ์ที่นักเรียนสอบวิชาเคมีผ่าน


                       จากโจทย์จะได้


                       P(M) = 1/3, P(C) = 8/15, P[(M ∩ C)' ] = 4/5

                       จากเงื่อนไขที่ 3 เราจะได้


                       P(M ∩ C) = 1 - [(M ∩ C)' ] = 1 - 4/5 = 1/5


                       ดังนั้นเราจะได้ความน่าจะเป็นที่นักเรียนคนนี้จะสอบผ่านอย่างน้อยหนึ่งวิชาคือ


                       P(M U C) = P(M) + P(C) - P(M ∩ C) = 1/3 + 8/15 -1/5 =

                       10/15 = 2/3
   1   2   3   4   5   6   7   8   9