Page 370 - Avian Virology: Current Research and Future Trends
P. 370

Marek’s Disease Virus |   361
            for cytolytic infection of B cells and maintenance of the transformed   Knight,  J.S., Sharma, N., and  Robertson, E.S. (2005). Epstein-Barr virus
            state but not for cytolytic infection of the feather follicle epithelium and   latent antigen 3C can mediate the degradation of the retinoblastoma
            horizontal spread of MDV. J. Virol. 79, 4545-4549.    protein through an SCF cellular ubiquitin ligase. Proc. Natl. Acad. Sci.
          Goldstein, D.J., and Weller, S.K. (1988). Herpes simplex virus type 1-induced   U.S.A. 102, 18562–18566.
            ribonucleotide reductase activity is dispensable for virus growth and   Kumar, S., Kunec, D., Buza, J.J., Chiang, H.I., Zhou, H., Subramaniam, S.,
            DNA synthesis: isolation and characterization of an ICP6 lacZ insertion   Pendarvis, K., Cheng, H.H., and Burgess, S.C. (2012). Nuclear Factor
            mutant. J. Virol. 62, 196–205.                        kappa  B is central  to  Marek’s disease herpesvirus  induced  neoplastic
          Heckert, R.A., Riva, J., Cook, S., McMillen, J., and Schwartz, R.D. (1996).   transformation of CD30 expressing lymphocytes in-vivo. BMC Syst.
            Onset of protective immunity in chicks after vaccination with a   Biol. 6, 123. https://doi.org/10.1186/1752-0509-6-123.
            recombinant  herpesvirus  of  turkeys  vaccine  expressing  Newcastle   Kut, E., and Rasschaert, D. (2004). Assembly of Marek’s disease virus
            disease virus fusion and hemagglutinin-neuraminidase antigens. Avian   (MDV) capsids using recombinant baculoviruses expressing MDV
            Dis. 40, 770–777.                                     capsid proteins. J. Gen. Virol. 85, 769–774.
          Heming,  J.D.,  Conway, J.F., and  Homa, F.L. (2017). Herpesvirus  capsid   Lee, L.F., Wu, P., Sui, D., Ren, D., Kamil, J., Kung, H.J., and Witter, R.L.
            assembly and DNA packaging. Adv. Anat. Embryol. Cell Biol.  223,   (2000). The complete unique long sequence and the overall genomic
            119–142. https://doi.org/10.1007/978-3-319-53168-7_6.  organization of the GA strain of Marek’s disease virus. Proc. Natl. Acad.
          Hicks, J.A., and Liu, H.C. (2013). Current state of Marek’s disease virus   Sci. U.S.A. 97, 6091–6096.
            microRNA research. Avian Dis. 57, 332–339.          Lee, L.F., Lupiani, B., Silva, R.F., Kung, H.J., and Reddy, S.M. (2008).
          Hicks, J.A., Trakooljul, N., and Liu, H.C. (2018). Alterations in cellular   Recombinant Marek’s disease virus (MDV) lacking the Meq oncogene
            and viral microRNA and cellular gene expression in Marek’s disease   confers protection against challenge with a very virulent plus strain of
            virus-transformed T-cell lines treated with sodium butyrate. Poult. Sci.   MDV. Vaccine 26, 1887–1892.
            98, 642–652.                                        Lee, L.F., Kreager, K.S., Arango, J., Paraguassu, A., Beckman, B., Zhang, H.,
          Hildebrandt, E., Dunn, J.R., and Cheng, H.H. (2015). Characterizing in vivo   Fadly, A., Lupiani, B., and Reddy, S.M. (2010). Comparative evaluation
            stability and potential interactions of a UL5 helicase-primase mutation   of vaccine efficacy of recombinant Marek’s disease virus vaccine lacking
            previously shown to reduce virulence and in vivo replication of Marek’s   Meq oncogene in commercial chickens. Vaccine 28, 1294–1299.
            disease virus. Virus Res. 203, 1–3.                 Lee, L.F., Heidari, M., Zhang, H., Lupiani, B., Reddy, S.M., and Fadly, A.
          Honess, R.W. (1984). Herpes simplex and ‘the herpes complex’: diverse   (2012).  Cell  culture  attenuation eliminates  rMd5DeltaMeq-induced
            observations and a unifying hypothesis. The eighth Fleming lecture. J. Gen.   bursal and thymic atrophy and renders the mutant virus as an effective
            Virol. 65, 2077–2107. https://doi.org/10.1099/0022-1317-65-12-2077.  and safe vaccine against Marek’s disease. Vaccine 30, 5151–5158.
          Isfort, R., Jones, D., Kost, R., Witter, R., and Kung, H.J. (1992). Retrovirus   Lee, L.F., Heidari, M., Sun, A., Zhang, H., Lupiani, B., and Reddy, S.
            insertion into herpesvirus in vitro and in vivo. Proc. Natl. Acad. Sci.   (2013). Identification and in vitro characterization of a Marek’s disease
            U.S.A. 89, 991–995.                                   virus-encoded Ribonucleotide reductase. Avian Dis. 57, 178–187.
          Iwai, K., Mori, N., Oie, M., Yamamoto, N., and Fujii, M. (2001). Human   Levy, A.M., Izumiya, Y., Brunovskis, P., Xia, L., Parcells, M.S., Reddy,
            T-cell leukemia virus type 1 tax protein activates transcription through   S.M., Lee, L., Chen, H.W., and Kung, H.J. (2003). Characterization of
            AP-1 site by inducing DNA binding activity in T-cells. Virology 279,   the chromosomal binding sites and dimerization partners of the viral
            38–46. https://doi.org/10.1006/viro.2000.0669.        oncoprotein Meq in Marek’s disease virus-transformed T-cells. J. Virol.
          Izumiya, Y., Jang, H.K., Ono, M., and Mikami, T. (2001). A complete   77, 12841–12851.
            genomic DNA sequence of Marek’s disease virus type 2, strain HPRS24.   Levy, A.M., Gilad, O., Xia, L., Izumiya, Y., Choi, J., Tsalenko, A., Yakhini,
            Curr. Top. Microbiol. Immunol. 255, 191–221.          Z., Witter, R., Lee, L., Cardona, C.J., et al. (2005). Marek’s disease virus
          Jarosinski, K.W., and Vautherot, J.F. (2015). Differential expression of Marek’s   Meq transforms chicken cells via the v-Jun transcriptional cascade: a
            disease virus (MDV) late proteins during in vitro and in situ replication:   converging transforming pathway for avian oncoviruses. Proc. Natl.
            role for pUL47 in regulation of the MDV UL46-UL49 gene locus.   Acad. Sci. U.S.A. 102, 14831–14836.
            Virology 484, 213–226. https://doi.org/10.1016/j.virol.2015.06.012.  Levy-Barda, A., Lerenthal, Y., Davis, A.J., Chung, Y.M., Essers, J., Shao, Z.,
          Jones, D., Lee, L., Liu, J.L., Kung, H.J., and Tillotson, J.K. (1992). Marek   van Vliet, N., Chen, D.J., Hu, M.C., Kanaar, R., et al. (2011). Involvement
            disease virus encodes a basic-leucine zipper gene resembling the fos/jun   of the nuclear proteasome activator PA28γ in the cellular response to
            oncogenes that is highly expressed in lymphoblastoid tumors. Proc. Natl.   DNA double-strand breaks. Cell Cycle  10, 4300–4310. https://doi.
            Acad. Sci. U.S.A. 89, 4042–4046.                      org/10.4161/cc.10.24.18642.
          Kaiser, P., Poh, T.Y., Rothwell, L., Avery, S., Balu, S., Pathania, U.S., Hughes,   Liu, H.M., Qin, A.J., Liu, Y.L., Jin, W.J., Ye, J.Q., Chen, H.J., Shao, H.X., and
            S., Goodchild, M., Morrell, S., Watson, M.,  et al. (2005). A genomic   Li, Y.X. (2006). [Construction and immunological characterization of
            analysis of chicken cytokines and chemokines. J. Interferon Cytokine   recombinant Marek’s disease virus expressing IBDV VP2 fusion protein].
            Res. 25, 467–484. https://doi.org/10.1089/jir.2005.25.467.  Sheng Wu Gong Cheng Xue Bao 22, 391–396.
          Kamil, J.P., Tischer, B.K., Trapp, S., Nair, V.K., Osterrieder, N., and Kung,   Lupiani, B., Lee, L.F., Cui, X., Gimeno, I., Anderson, A., Morgan, R.W., Silva,
            H.J. (2005). vLIP, a viral lipase homologue, is a virulence factor of   R.F., Witter, R.L., Kung, H.J., and Reddy, S.M. (2004). Marek’s disease
            Marek’s disease virus. J. Virol. 79, 6984–6996.       virus-encoded Meq gene is involved in transformation of lymphocytes
          Kato, K., Jang, H.K., Izumiya, Y., Cai, J.S., Tsushima, Y., Miyazawa, T., Kai,   but is dispensable for replication. Proc. Natl. Acad. Sci. U.S.A.  101,
            C., and Mikami, T. (1999). Identification of the Marek’s disease virus   11815–11820. https://doi.org/10.1073/pnas.0404508101.
            serotype 2 genes homologous to the glycoprotein B (UL27), ICP18.5   Lupiani, B., Lee, L.F., Kreager, K.S., Witter, R.L., and Reddy, S.M. (2013).
            (UL28)  and  major  DNA-binding  protein  (UL29)  genes  of  herpes   Insertion of reticuloendotheliosis virus long terminal repeat into the
            simplex virus type 1. J. Vet. Med. Sci. 61, 1161–1165.  genome of CVI988 strain of Marek’s disease virus results in enhanced
          Kaufer, B.B., Trapp, S., Jarosinski, K.W., and Osterrieder, N. (2010).   growth and protection. Avian Dis. 57, 427–431.
            Herpesvirus telomerase RNA(vTR)-dependent lymphoma formation   Mallette, F.A., Mattiroli, F., Cui, G., Young, L.C., Hendzel, M.J., Mer, G.,
            does not require interaction of vTR with telomerase reverse transcriptase   Sixma, T.K., and Richard, S. (2012). RNF8- and RNF168-dependent
            (TERT). PLOS Pathog. 6, e1001073.                     degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA
          Kawamura, H., King, D.J., and Anderson, D.P. (1969). A herpesvirus isolated   damage sites. EMBO J.  31, 1865–1878. https://doi.org/10.1038/
            from kidney cell culture of normal turkeys. Avian Dis. 13, 853–863.  emboj.2012.47.
          Kelly,  B.J.,  Fraefel,  C.,  Cunningham,  A.L.,  and  Diefenbach,  R.J.  (2009).   Mao,  X.,  Orchard,  G.,  Lillington,  D.M.,  Russell-Jones,  R.,  Young,  B.D.,
            Functional roles of the tegument proteins of herpes simplex virus   and Whittaker, S.J. (2003). Amplification and overexpression of JUNB
            type 1. Virus Res.  145, 173–186. https://doi.org/10.1016/j.  is associated with primary cutaneous T-cell lymphomas. Blood  101,
            virusres.2009.07.007.                                 1513–1519. https://doi.org/10.1182/blood-2002-08-2434.
          Kheimar, A., Previdelli, R.L., Wight, D.J., and Kaufer, B.B. (2017). Telomeres   Marek, J. (1907). Multiple Nervenentzündung (Polyneuritis) bei Hühnern.
            and Telomerase: Role in Marek’s Disease Virus Pathogenesis, Integration   Dtsch. Tierarztl. Wochenschr. 15, 417–421.
            and Tumorigenesis. Viruses 9, E173.
   365   366   367   368   369   370   371   372   373   374   375