Page 371 - Avian Virology: Current Research and Future Trends
P. 371

362  |  Lupiani et al.
          Mettenleiter, T.C. (2002). Herpesvirus assembly and egress. J. Virol.  76,   after stable transfection of MSB-1 cells with the Marek’s disease virus
            1537–1547.                                             homologue of ICP4. Virology 201, 132–136.
          Morgan, R.W., Gelb, J., Pope, C.R., and Sondermeijer, P.J. (1993). Efficacy in   Pyles, R.B., and Thompson, R.L. (1994). Evidence that the herpes
            chickens of a herpesvirus of turkeys recombinant vaccine containing the   simplex virus type 1 uracil DNA glycosylase is required for efficient
            fusion gene of Newcastle disease virus: onset of protection and effect of   viral replication and latency in the murine nervous system. J. Virol. 68,
            maternal antibodies. Avian Dis. 37, 1032–1040.         4963–4972.
          Mossman, K.L., Sherburne, R., Lavery, C., Duncan, J., and Smiley, J.R.   Pyles, R.B., Sawtell, N.M., and Thompson, R.L. (1992). Herpes simplex
            (2000). Evidence that herpes simplex virus VP16 is required for viral   virus type 1 dUTPase mutants are attenuated for neurovirulence,
            egress downstream of the initial envelopment event. J. Virol. 74, 6287–  neuroinvasiveness, and reactivation from latency. J. Virol. 66, 6706–6713.
            6299.                                               Radkov, S.A., Kellam, P., and Boshoff, C. (2000). The latent nuclear antigen of
          Muylkens, B., Coupeau, D., Dambrine, G., Trapp, S., and Rasschaert, D.   Kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F
            (2010). Marek’s disease virus microRNA designated Mdv1-pre-miR-M4   pathway and with the oncogene Hras transforms primary rat cells. Nat.
            targets both cellular and viral genes. Arch. Virol.  155, 1823–1837.   Med. 6, 1121–1127. https://doi.org/10.1038/80459.
            https://doi.org/10.1007/s00705-010-0777-y.          Ramadan, K.,  and Meerang, M. (2011).  Degradation-linked ubiquitin
          Nazerian, K., Lee, L.F., Yanagida, N., and Ogawa, R. (1992). Protection   signal and proteasome are integral components of DNA double strand
            against Marek’s disease by a fowlpox virus recombinant expressing the   break repair: New perspectives for anti-cancer therapy. FEBS Lett. 585,
            glycoprotein B of Marek’s disease virus. J. Virol. 66, 1409–1413.  2868–2875. https://doi.org/10.1016/j.febslet.2011.04.046.
          Okazaki, W., Purchase, H.G., and Burmester, B.R. (1970). Protection against   Rasschaert, P., Gennart, I., Boumart, I., Dambrine, G., Muylkens, B.,
            Marek’s disease by vaccination with a herpesvirus of turkeys. Avian Dis.   Rasschaert, D., and Laurent, S. (2018). Specific transcriptional and
            14, 413–429.                                           post-transcriptional regulation of the major immediate early ICP4 gene
          Osterrieder, N. (1999). Sequence and initial characterization of the U(L)10   of GaHV-2 during the lytic, latent and reactivation phases. J. Gen. Virol.
            (glycoprotein M) and U(L)11 homologous genes of serotype 1 Marek’s   [Epub ahead of print]. https://doi.org/10.1099/jgv.0.001007.
            Disease Virus. Arch. Virol. 144, 1853–1863.         Reddy, S.K., Sharma, J.M., Ahmad, J., Reddy, D.N., McMillen, J.K., Cook,
          Osterrieder, N., Kamil, J.P., Schumacher, D., Tischer, B.K., and Trapp,   S.M., Wild, M.A., and Schwartz, R.D. (1996). Protective efficacy of
            S. (2006). Marek’s disease virus: from miasma to model. Nat. Rev.   a recombinant herpesvirus of turkeys as an in ovo vaccine against
            Microbiol. 4, 283–294.                                 Newcastle and Marek’s diseases in specific-pathogen-free chickens.
          Pappenheimer, A.M., Dunn, L. C., and Cone, V. (1926). A study of fowl   Vaccine 14, 469–477.
            paralysis. Conn. Storrs Agric. Exp. Stn. Bull. 143, 186.  Reddy, S.M., Lupiani, B., Gimeno, I.M., Silva, R.F., Lee, L.F., and Witter, R.L.
          Pappenheimer, A.M., Dunn, L.C., and Cone, V. (1929). Studies on fowl   (2002). Rescue of a pathogenic Marek’s disease virus with overlapping
            paralysis (neurolymphomatosis  gallinarum)  : I.  clinical  features and   cosmid DNAs: use of a pp38 mutant to validate the technology for the
            pathology. J. Exp. Med. 49, 63–86.                     study of gene function. Proc. Natl. Acad. Sci. U.S.A.  99, 7054–7059.
          Parcells, M.S., Anderson, A.S., and Morgan, T.W. (1995). Retention of   https://doi.org/10.1073/pnas.092152699.
            oncogenicity by a Marek’s disease virus mutant lacking six unique short   Reddy, S.M., Sun, A., Khan, O.A., Lee, L.F., and Lupiani, B. (2013). Cloning
            region genes. J. Virol. 69, 7888–7898.                 of a very virulent plus, 686 strain of Marek’s disease virus as a bacterial
          Parcells, M.S., Lin, S.F., Dienglewicz, R.L., Majerciak, V., Robinson, D.R.,   artificial chromosome. Avian Dis. 57 (Suppl. 2), 469–473. https://doi.
            Chen, H.C., Wu, Z., Dubyak, G.R., Brunovskis, P., Hunt, H.D.,  et al.   org/10.1637/10444-110412-ResNote.1.
            (2001). Marek’s disease virus (MDV) encodes an interleukin-8 homolog   Reichard, P. (1988). Interactions between deoxyribonucleotide and DNA
            (vIL-8): characterization of the vIL-8 protein and a vIL-8 deletion   synthesis. Annu. Rev. Biochem. 57, 349–374. https://doi.org/10.1146/
            mutant MDV. J. Virol.  75, 5159–5173. https://doi.org/10.1128/  annurev.bi.57.070188.002025.
            JVI.75.11.5159-5173.2001.                           Reynolds,  A.E.,  Wills,  E.G.,  Roller, R.J., Ryckman,  B.J.,  and  Baines,  J.D.
          Parker, G.A., Crook, T., Bain, M., Sara, E.A., Farrell, P.J., and Allday,   (2002). Ultrastructural localization of the herpes simplex virus type
            M.J. (1996).  Epstein-Barr virus  nuclear antigen (EBNA)3C is an   1 UL31, UL34, and US3 proteins suggests specific roles in primary
            immortalizing oncoprotein with similar properties to adenovirus E1A   envelopment and egress of nucleocapsids. J. Virol. 76, 8939–8952.
            and papillomavirus E7. Oncogene 13, 2541–2549.      Sakaguchi, M., Nakamura, H., Sonoda, K., Okamura, H., Yokogawa, K.,
          Parker, G.A., Touitou, R., and Allday, M.J. (2000). Epstein-Barr virus   Matsuo, K., and Hira, K. (1998). Protection of chickens with or without
            EBNA3C can disrupt multiple cell cycle checkpoints and induce nuclear   maternal antibodies against both Marek’s and Newcastle diseases by
            division divorced from cytokinesis. Oncogene 19, 700–709. https://doi.  one-time vaccination with recombinant vaccine of Marek’s disease virus
            org/10.1038/sj.onc.1203327.                            type 1. Vaccine 16, 472–479.
          Payne, L.N. (2004). Pathological responses to infection. In Marek’s Disease,   Sato, N., Maehara, N., Mizumoto, K., Nagai, E., Yasoshima, T., Hirata, K., and
            An Evolving Problem: Biology of Animal Infections, Davison, F. and   Tanaka, M. (2001). Telomerase activity of cultured human pancreatic
            Nair, V., eds (Academic Press, Elsevier Ltd, London), pp. 78–97.  carcinoma cell lines correlates with their potential for migration and
          Pellett, P.E., and Roizman, B. (2013). Herpesviridae. In Fields Virology,   invasion. Cancer 91, 496–504.
            Knipe, D.M., and Howley, P.M., eds. (Wolters Kluwer Health/Lippincott   Schat, K.A., and Calnek, B.W. (1978). Characterization of an apparently
            Williams & Wilkins, Philadelphia pp. 1803–1819.        nononcogenic Marek’s disease virus. J. Natl. Cancer Inst. 60, 1075–1082.
          Petherbridge, L., Howes, K., Baigent, S.J., Sacco, M.A., Evans, S., Osterrieder,   Schat, K.A., Chen, C.L., Calnek, B.W., and Char, D. (1991). Transformation
            N., and Nair, V. (2003). Replication-competent bacterial artificial   of T-lymphocyte subsets by Marek’s disease herpesvirus. J. Virol.  65,
            chromosomes of Marek’s disease virus: novel tools for generation of   1408–1413.
            molecularly defined herpesvirus vaccines. J. Virol. 77, 8712–8718.  Schumacher, D., Tischer, B.K., Fuchs, W., and Osterrieder, N. (2000).
          Petherbridge,  L., Brown,  A.C., Baigent,  S.J., Howes,  K., Sacco,  M.A.,   Reconstitution of Marek’s disease virus serotype 1 (MDV-1) from DNA
            Osterrieder, N., and Nair, V.K. (2004). Oncogenicity of virulent Marek’s   cloned as a bacterial artificial chromosome and characterization of a
            disease virus cloned as bacterial artificial chromosomes. J. Virol.  78,   glycoprotein B-negative MDV-1 mutant. J. Virol. 74, 11088–11098.
            13376–13380.                                        Schumacher,  D.,  Tischer,  B.K.,  Reddy,  S.M.,  and  Osterrieder,  N.  (2001).
          Piedade, D., and Azevedo-Pereira, J.M. (2016). The role of microRNAs in   Glycoproteins E and I of Marek’s disease virus serotype 1 are essential
            the pathogenesis of herpesvirus infection. Viruses 8, E156. https://doi.  for virus growth in cultured cells. J. Virol. 75, 11307–11318.
            org/10.3390/v8060156.                               Schumacher, D., McKinney, C., Kaufer, B.B., and Osterrieder, N. (2008).
          Prasad, L.B. (1978). Effect of maternal antibody on viraemic and antibody   Enzymatically inactive U(S)3 protein kinase of Marek’s disease virus
            responses to cell-associated and cell-free turkey herpesvirus in chickens.   (MDV) is capable of depolymerizing F-actin but results in accumulation
            Br. Vet. J. 134, 315–321.                              of virions in perinuclear invaginations and reduced virus growth.
          Pratt, W.D., Cantello, J., Morgan, R.W., and Schat, K.A. (1994). Enhanced   Virology 375, 37–47. https://doi.org/10.1016/j.virol.2008.01.026.
            expression of the Marek’s disease virus-specific phosphoproteins
   366   367   368   369   370   371   372   373   374   375   376