Page 372 - Avian Virology: Current Research and Future Trends
P. 372
Marek’s Disease Virus | 363
Shao, L., Rapp, L.M., and Weller, S.K. (1993). Herpes simplex virus 1 protection against tumorigenic Marek’s disease in chickens. J. Gen. Virol.
alkaline nuclease is required for efficient egress of capsids from the 83, 2367–2376.
nucleus. Virology 196, 146–162. Tischer, B.K., von Einem, J., Kaufer, B., and Osterrieder, N. (2006). Two-step
Sharma, J.M., Witter, R.L., and Burmester, B.R. (1973). Pathogenesis red-mediated recombination for versatile high-efficiency markerless
of Marek’s disease in old chickens: lesion regression as the basis for DNA manipulation in Escherichia coli. BioTechniques 40, 191–197.
age-related resistance. Infect. Immun. 8, 715–724. Tomkinson, B., Robertson, E., Yalamanchili, R., Longnecker, R., and Kieff,
Shi, Y., Sawada, J., Sui, G., Affar, e.l.B., Whetstine, J.R., Lan, F., Ogawa, E. (1993). Epstein-Barr virus recombinants from overlapping cosmid
H., Luke, M.P., Nakatani, Y., and Shi, Y. (2003). Coordinated histone fragments. J. Virol. 67, 7298–7306.
modifications mediated by a CtBP co-repressor complex. Nature 422, Touitou, R., Hickabottom, M., Parker, G., Crook, T., and Allday, M.J. (2001).
735–738. https://doi.org/10.1038/nature01550. Physical and functional interactions between the corepressor CtBP and
Skalska, L., White, R.E., Franz, M., Ruhmann, M., and Allday, M.J. (2010). the Epstein-Barr virus nuclear antigen EBNA3C. J. Virol. 75, 7749–7755.
Epigenetic repression of p16(INK4A) by latent Epstein-Barr virus https://doi.org/10.1128/JVI.75.16.7749-7755.2001.
requires the interaction of EBNA3A and EBNA3C with CtBP. PLOS Trapp, S., Parcells, M.S., Kamil, J.P., Schumacher, D., Tischer, B.K., Kumar,
Pathog. 6, e1000951. https://doi.org/10.1371/journal.ppat.1000951. P.M., Nair, V.K., and Osterrieder, N. (2006). A virus-encoded telomerase
Smiley, J.R. (2004). Herpes simplex virus virion host shutoff protein: RNA promotes malignant T-cell lymphomagenesis. J. Exp. Med. 203,
immune evasion mediated by a viral RNase? J. Virol. 78, 1063–1068. 1307–1317.
Sondermeijer, P.J., Claessens, J.A., Jenniskens, P.E., Mockett, A.P., Thijssen, Tsukamoto, K., Kojima, C., Komori, Y., Tanimura, N., Mase, M., and
R.A., Willemse, M.J., and Morgan, R.W. (1993). Avian herpesvirus as a Yamaguchi, S. (1999). Protection of chickens against very virulent
live viral vector for the expression of heterologous antigens. Vaccine 11, infectious bursal disease virus (IBDV) and Marek’s disease virus (MDV)
349–358. with a recombinant MDV expressing IBDV VP2. Virology 257, 352–362.
Sonoda, K., Sakaguchi, M., Okamura, H., Yokogawa, K., Tokunaga, E., Tsukamoto, K., Saito, S., Saeki, S., Sato, T., Tanimura, N., Isobe, T., Mase, M.,
Tokiyoshi, S., Kawaguchi, Y., and Hirai, K. (2000). Development of an Imada, T., Yuasa, N., and Yamaguchi, S. (2002). Complete, long-lasting
effective polyvalent vaccine against both Marek’s and Newcastle diseases protection against lethal infectious bursal disease virus challenge by
based on recombinant Marek’s disease virus type 1 in commercial a single vaccination with an avian herpesvirus vector expressing VP2
chickens with maternal antibodies. J. Virol. 74, 3217–3226. antigens. J. Virol. 76, 5637–5645.
Spatz, S.J., and Schat, K.A. (2011). Comparative genomic sequence analysis Tulman, E.R., Afonso, C.L., Lu, Z., Zsak, L., Rock, D.L., and Kutish, G.F.
of the Marek’s disease vaccine strain SB-1. Virus Genes 42, 331–338. (2000). The genome of a very virulent Marek’s disease virus. J. Virol. 74,
Strassheim, S., Stik, G., Rasschaert, D., and Laurent, S. (2012). 7980–7988.
mdv1-miR-M7-5p, located in the newly identified first intron of the van Zijl, M., Quint, W., Briaire, J., de Rover, T., Gielkens, A., and Berns,
latency-associated transcript of Marek’s disease virus, targets the A. (1988). Regeneration of herpesviruses from molecularly cloned
immediate-early genes ICP4 and ICP27. J. Gen. Virol. 93, 1731–1742. subgenomic fragments. J. Virol. 62, 2191–2195.
Subramaniam, S., Johnston, J., Preeyanon, L., Brown, C.T., Kung, H.J., Ventura, A., and Jacks, T. (2009). MicroRNAs and cancer: short RNAs
and Cheng, H.H. (2013). Integrated analyses of genome-wide DNA go a long way. Cell 136, 586–591. https://doi.org/10.1016/j.
occupancy and expression profiling identify key genes and pathways cell.2009.02.005.
involved in cellular transformation by a Marek’s disease virus oncoprotein, Verma, S.C., Borah, S., and Robertson, E.S. (2004). Latency-associated
Meq. J. Virol. 87, 9016–9029. https://doi.org/10.1128/JVI.01163-13. nuclear antigen of Kaposi’s sarcoma-associated herpesvirus up-regulates
Sui, D., Wu, P., Kung, H.J., and Lee, L.F. (1995). Identification and transcription of human telomerase reverse transcriptase promoter
characterization of a Marek’s disease virus gene encoding DNA through interaction with transcription factor Sp1. J. Virol. 78, 10348–
polymerase. Virus Res. 36, 269–278. 10359. https://doi.org/10.1128/JVI.78.19.10348-10359.2004.
Tahiri-Alaoui, A., Matsuda, D., Xu, H., Panagiotis, P., Burman, L., Lambeth, Viejo-Borbolla, A., Ottinger, M., Brüning, E., Bürger, A., König, R., Kati,
L.S., Petherbridge, L., James, W., Mauro, V., and Nair, V. (2009a). The 5′ E., Sheldon, J.A., and Schulz, T.F. (2005). Brd2/RING3 interacts
leader of the mRNA encoding the marek’s disease virus serotype 1 pp14 with a chromatin-binding domain in the Kaposi’s Sarcoma-associated
protein contains an intronic internal ribosome entry site with allosteric herpesvirus latency-associated nuclear antigen 1 (LANA-1) that is
properties. J. Virol. 83, 12769–12778. https://doi.org/10.1128/ required for multiple functions of LANA-1. J. Virol. 79, 13618–13629.
JVI.01010-09. Vittone, V., Diefenbach, E., Triffett, D., Douglas, M.W., Cunningham, A.L.,
Tahiri-Alaoui, A., Smith, L.P., Baigent, S., Kgosana, L., Petherbridge, L.J., and Diefenbach, R.J. (2005). Determination of interactions between
Lambeth, L.S., James, W., and Nair, V. (2009b). Identification of an tegument proteins of herpes simplex virus type 1. J. Virol. 79, 9566–9571.
intercistronic internal ribosome entry site in a Marek’s disease virus Volkening, J.D., and Spatz, S.J. (2013). Identification and characterization
immediate-early gene. J. Virol. 83, 5846–5853. of the genomic termini and cleavage/packaging signals of gallid
Tahiri-Alaoui, A., Smith, L.P., Kgosana, L., Petherbridge, L.J., and Nair, herpesvirus type 2. Avian Dis. 57 (Suppl. 2), 401–408. https://doi.
V. (2013). Identification of a neurovirulence factor from Marek’s org/10.1637/10410-100312-Reg.1.
disease virus. Avian Dis. 57 (Suppl. 2), 387–394. https://doi. Ward, S.A., and Weller, S.K. (2011). HSV-1 DNA replication. In
org/10.1637/10322-080912-Reg.1. Alphaherpesviruses: Molecular Virology, Weller, S.K., ed. (Caister
Tan, X., Brunovskis, P., and Velicer, L.F. (2001). Transcriptional analysis of Academic, Norfolk), pp. 89–112.
Marek’s disease virus glycoprotein D, I, and E genes: gD expression is Weller, S.K., and Coen, D.M. (2012). Herpes simplex viruses: mechanisms
undetectable in cell culture. J. Virol. 75, 2067–2075. of DNA replication. Cold Spring Harb. Perspect. Biol. 4, a013011.
Tandon, R., Mocarski, E.S., and Conway, J.F. (2015). The A, B, Cs of https://doi.org/10.1101/cshperspect.a013011.
herpesvirus capsids. Viruses 7, 899–914. https://doi.org/10.3390/ Witter, R.L. (1983). Characteristics of Marek’s disease viruses isolated from
v7030899. vaccinated commercial chicken flocks: association of viral pathotype
Tang, N., Zhang, Y., Pedrera, M., Chang, P., Baigent, S., Moffat, K., Shen, with lymphoma frequency. Avian Dis. 27, 113–132.
Z., Nair, V., and Yao, Y. (2018). A simple and rapid approach to develop Witter, R.L. (1985). Principles of vaccination. In Marek’s Disease,
recombinant avian herpesvirus vectored vaccines using CRISPR/Cas9 Developments in Veterinary Virology, Vol. 1, Payne, L.N., ed. (Springer,
system. Vaccine 36, 716–722. Boston, MA), pp. 203–250.
Tian, F., Luo, J., Zhang, H., Chang, S., and Song, J. (2012). MiRNA Witter, R.L., and Burmester, B.R. (1979). Differential effect of maternal
expression signatures induced by Marek’s disease virus infection in antibodies on efficacy of cellular and cell-free Marek’s disease vaccines.
chickens. Genomics 99, 152–159. Avian Pathol. 8, 145–156.
Tischer, B.K., Schumacher, D., Beer, M., Beyer, J., Teifke, J.P., Osterrieder, Witter, R.L., and Lee, L.F. (1984). Polyvalent Marek’s disease vaccines:
K., Wink, K., Zelnik, V., Fehler, F., and Osterrieder, N. (2002). A DNA safety, efficacy and protective synergism in chickens with maternal
vaccine containing an infectious Marek’s disease virus genome can confer antibodies. Avian Pathol. 13, 75–92.