Page 372 - Avian Virology: Current Research and Future Trends
P. 372

Marek’s Disease Virus |   363
          Shao, L., Rapp, L.M., and Weller, S.K. (1993). Herpes simplex virus 1   protection against tumorigenic Marek’s disease in chickens. J. Gen. Virol.
            alkaline nuclease is required for efficient egress of capsids from the   83, 2367–2376.
            nucleus. Virology 196, 146–162.                     Tischer, B.K., von Einem, J., Kaufer, B., and Osterrieder, N. (2006). Two-step
          Sharma, J.M., Witter, R.L., and Burmester, B.R. (1973). Pathogenesis   red-mediated recombination for versatile high-efficiency markerless
            of Marek’s disease in old chickens: lesion regression as the basis for   DNA manipulation in Escherichia coli. BioTechniques 40, 191–197.
            age-related resistance. Infect. Immun. 8, 715–724.  Tomkinson, B., Robertson, E., Yalamanchili, R., Longnecker, R., and Kieff,
          Shi,  Y.,  Sawada,  J.,  Sui,  G.,  Affar,  e.l.B.,  Whetstine,  J.R.,  Lan,  F.,  Ogawa,   E.  (1993). Epstein-Barr virus recombinants from  overlapping  cosmid
            H., Luke, M.P., Nakatani, Y., and Shi, Y. (2003). Coordinated histone   fragments. J. Virol. 67, 7298–7306.
            modifications mediated by a CtBP co-repressor complex. Nature 422,   Touitou, R., Hickabottom, M., Parker, G., Crook, T., and Allday, M.J. (2001).
            735–738. https://doi.org/10.1038/nature01550.         Physical and functional interactions between the corepressor CtBP and
          Skalska, L., White, R.E., Franz, M., Ruhmann, M., and Allday, M.J. (2010).   the Epstein-Barr virus nuclear antigen EBNA3C. J. Virol. 75, 7749–7755.
            Epigenetic repression of p16(INK4A) by latent Epstein-Barr virus   https://doi.org/10.1128/JVI.75.16.7749-7755.2001.
            requires the interaction of EBNA3A and EBNA3C with CtBP. PLOS   Trapp, S., Parcells, M.S., Kamil, J.P., Schumacher, D., Tischer, B.K., Kumar,
            Pathog. 6, e1000951. https://doi.org/10.1371/journal.ppat.1000951.  P.M., Nair, V.K., and Osterrieder, N. (2006). A virus-encoded telomerase
          Smiley, J.R. (2004). Herpes simplex virus virion host shutoff protein:   RNA promotes malignant T-cell lymphomagenesis. J. Exp. Med. 203,
            immune evasion mediated by a viral RNase? J. Virol. 78, 1063–1068.  1307–1317.
          Sondermeijer, P.J., Claessens, J.A., Jenniskens, P.E., Mockett, A.P., Thijssen,   Tsukamoto, K., Kojima, C., Komori, Y., Tanimura, N., Mase, M., and
            R.A., Willemse, M.J., and Morgan, R.W. (1993). Avian herpesvirus as a   Yamaguchi, S. (1999). Protection of chickens against very virulent
            live viral vector for the expression of heterologous antigens. Vaccine 11,   infectious bursal disease virus (IBDV) and Marek’s disease virus (MDV)
            349–358.                                              with a recombinant MDV expressing IBDV VP2. Virology 257, 352–362.
          Sonoda, K., Sakaguchi, M., Okamura, H., Yokogawa, K., Tokunaga, E.,   Tsukamoto, K., Saito, S., Saeki, S., Sato, T., Tanimura, N., Isobe, T., Mase, M.,
            Tokiyoshi, S., Kawaguchi, Y., and Hirai, K. (2000). Development of an   Imada, T., Yuasa, N., and Yamaguchi, S. (2002). Complete, long-lasting
            effective polyvalent vaccine against both Marek’s and Newcastle diseases   protection against lethal infectious bursal disease virus challenge by
            based  on  recombinant  Marek’s disease  virus  type  1  in commercial   a single vaccination with an avian herpesvirus vector expressing VP2
            chickens with maternal antibodies. J. Virol. 74, 3217–3226.  antigens. J. Virol. 76, 5637–5645.
          Spatz, S.J., and Schat, K.A. (2011). Comparative genomic sequence analysis   Tulman, E.R., Afonso, C.L., Lu, Z., Zsak, L., Rock, D.L., and Kutish, G.F.
            of the Marek’s disease vaccine strain SB-1. Virus Genes 42, 331–338.  (2000). The genome of a very virulent Marek’s disease virus. J. Virol. 74,
          Strassheim, S., Stik, G., Rasschaert, D., and Laurent, S. (2012).   7980–7988.
            mdv1-miR-M7-5p, located in the newly identified first intron of the   van Zijl, M., Quint, W., Briaire, J., de Rover, T., Gielkens, A., and Berns,
            latency-associated transcript of Marek’s disease virus, targets the   A. (1988). Regeneration of herpesviruses from molecularly cloned
            immediate-early genes ICP4 and ICP27. J. Gen. Virol. 93, 1731–1742.  subgenomic fragments. J. Virol. 62, 2191–2195.
          Subramaniam, S., Johnston, J., Preeyanon, L., Brown, C.T., Kung, H.J.,   Ventura, A., and Jacks, T. (2009). MicroRNAs and cancer: short RNAs
            and Cheng, H.H.  (2013). Integrated analyses of genome-wide DNA   go a long way. Cell  136, 586–591.  https://doi.org/10.1016/j.
            occupancy and expression profiling identify key genes and pathways   cell.2009.02.005.
            involved in cellular transformation by a Marek’s disease virus oncoprotein,   Verma, S.C., Borah, S., and Robertson, E.S. (2004). Latency-associated
            Meq. J. Virol. 87, 9016–9029. https://doi.org/10.1128/JVI.01163-13.  nuclear antigen of Kaposi’s sarcoma-associated herpesvirus up-regulates
          Sui, D., Wu, P., Kung, H.J., and Lee, L.F. (1995). Identification and   transcription of human telomerase reverse transcriptase promoter
            characterization of a Marek’s disease virus gene encoding DNA   through interaction with transcription factor Sp1. J. Virol. 78, 10348–
            polymerase. Virus Res. 36, 269–278.                   10359. https://doi.org/10.1128/JVI.78.19.10348-10359.2004.
          Tahiri-Alaoui, A., Matsuda, D., Xu, H., Panagiotis, P., Burman, L., Lambeth,   Viejo-Borbolla, A., Ottinger, M., Brüning, E., Bürger, A., König, R., Kati,
            L.S., Petherbridge, L., James, W., Mauro, V., and Nair, V. (2009a). The 5′   E., Sheldon, J.A., and Schulz, T.F. (2005). Brd2/RING3 interacts
            leader of the mRNA encoding the marek’s disease virus serotype 1 pp14   with a chromatin-binding domain in the Kaposi’s Sarcoma-associated
            protein contains an intronic internal ribosome entry site with allosteric   herpesvirus  latency-associated  nuclear antigen  1  (LANA-1)  that  is
            properties. J. Virol.  83, 12769–12778.  https://doi.org/10.1128/  required for multiple functions of LANA-1. J. Virol. 79, 13618–13629.
            JVI.01010-09.                                       Vittone, V., Diefenbach, E., Triffett, D., Douglas, M.W., Cunningham, A.L.,
          Tahiri-Alaoui, A., Smith, L.P., Baigent, S., Kgosana, L., Petherbridge, L.J.,   and Diefenbach, R.J. (2005). Determination of interactions between
            Lambeth, L.S., James, W., and Nair, V. (2009b). Identification of an   tegument proteins of herpes simplex virus type 1. J. Virol. 79, 9566–9571.
            intercistronic internal ribosome entry site in a Marek’s disease virus   Volkening, J.D., and Spatz, S.J. (2013). Identification and characterization
            immediate-early gene. J. Virol. 83, 5846–5853.        of  the  genomic  termini  and  cleavage/packaging  signals  of  gallid
          Tahiri-Alaoui, A., Smith, L.P., Kgosana, L., Petherbridge, L.J., and Nair,   herpesvirus type 2. Avian Dis.  57 (Suppl. 2), 401–408.  https://doi.
            V. (2013). Identification of a neurovirulence factor from Marek’s   org/10.1637/10410-100312-Reg.1.
            disease virus. Avian Dis. 57 (Suppl. 2), 387–394.  https://doi.  Ward, S.A., and Weller, S.K. (2011). HSV-1 DNA replication. In
            org/10.1637/10322-080912-Reg.1.                       Alphaherpesviruses:  Molecular  Virology,  Weller,  S.K.,  ed.  (Caister
          Tan, X., Brunovskis, P., and Velicer, L.F. (2001). Transcriptional analysis of   Academic, Norfolk), pp. 89–112.
            Marek’s disease virus glycoprotein D, I, and E genes: gD expression is   Weller, S.K., and Coen, D.M. (2012). Herpes simplex viruses: mechanisms
            undetectable in cell culture. J. Virol. 75, 2067–2075.  of DNA replication. Cold Spring Harb. Perspect. Biol.  4, a013011.
          Tandon, R., Mocarski, E.S., and Conway, J.F. (2015). The A, B, Cs of   https://doi.org/10.1101/cshperspect.a013011.
            herpesvirus capsids. Viruses  7, 899–914.  https://doi.org/10.3390/  Witter, R.L. (1983). Characteristics of Marek’s disease viruses isolated from
            v7030899.                                             vaccinated commercial chicken flocks: association of viral pathotype
          Tang, N., Zhang, Y., Pedrera, M., Chang, P., Baigent, S., Moffat, K., Shen,   with lymphoma frequency. Avian Dis. 27, 113–132.
            Z., Nair, V., and Yao, Y. (2018). A simple and rapid approach to develop   Witter, R.L. (1985). Principles of vaccination. In Marek’s Disease,
            recombinant avian herpesvirus vectored vaccines using CRISPR/Cas9   Developments in Veterinary Virology, Vol. 1, Payne, L.N., ed. (Springer,
            system. Vaccine 36, 716–722.                          Boston, MA), pp. 203–250.
          Tian, F., Luo, J., Zhang, H., Chang, S., and Song, J. (2012). MiRNA   Witter, R.L., and Burmester, B.R. (1979). Differential effect of maternal
            expression signatures induced by Marek’s disease virus infection in   antibodies on efficacy of cellular and cell-free Marek’s disease vaccines.
            chickens. Genomics 99, 152–159.                       Avian Pathol. 8, 145–156.
          Tischer, B.K., Schumacher, D., Beer, M., Beyer, J., Teifke, J.P., Osterrieder,   Witter, R.L., and Lee, L.F. (1984). Polyvalent Marek’s disease vaccines:
            K., Wink, K., Zelnik, V., Fehler, F., and Osterrieder, N. (2002). A DNA   safety, efficacy and protective synergism in  chickens  with maternal
            vaccine containing an infectious Marek’s disease virus genome can confer   antibodies. Avian Pathol. 13, 75–92.
   367   368   369   370   371   372   373   374   375   376   377