Page 373 - Avian Virology: Current Research and Future Trends
P. 373
364 | Lupiani et al.
Witter, R.L., Nazerian, K., Purchase, H.G., and Burgoyne, G.H. (1970). Yamauchi, Y., Daikoku, T., Goshima, F., and Nishiyama, Y. (2003). Herpes
Isolation from turkeys of a cell-associated herpesvirus antigenically simplex virus UL14 protein blocks apoptosis. Microbiol. Immunol. 47,
related to Marek’s disease virus. Am. J. Vet. Res. 31, 525-538. 685–689.
Witter, R.L., Lee, L.F., and Fadly, A.M. (1995). Characteristics of CVI988/ Yao, Y., Bassett, A., and Nair, V. (2016). Targeted editing of avian herpesvirus
Rispens and R2/23, two prototype vaccine strains of serotype 1 Marek’s vaccine vector using crispr/cas9 nucleases. Int. J. Vaccines Technol. 1.
disease virus. Avian Dis. 39, 269–284. Young, L.S., and Murray, P.G. (2003). Epstein-Barr virus and oncogenesis:
Witter, R.L., Li, D., Jones, D., Lee, L.F., and Kung, H.J. (1997). Retroviral from latent genes to tumours. Oncogene 22, 5108–5121. https://doi.
insertional mutagenesis of a herpesvirus: a Marek’s disease virus mutant org/10.1038/sj.onc.1206556.
attenuated for oncogenicity but not for immunosuppression or in vivo Zelnik, V. (2004). Diagnosis of Marek’s disease. In Marek’s Disease: An
replication. Avian Dis. 41, 407–421. Evolving Problem, Davison, F. and Nair, V., eds (Elsevier Ltd, London),
Wu, P., Reed, W.M., and Lee, L.F. (2001). Glycoproteins H and L of Marek’s pp. 156–167.
disease virus form a hetero-oligomer essential for translocation and cell Zhang, Y., Tang, N., Sadigh, Y., Baigent, S., Shen, Z., Nair, V., and Yao, Y.
surface expression. Arch. Virol. 146, 983–992. (2018). Application of CRISPR/Cas9 gene editing system on MDV-1
Wu, T.F., Sun, W., Boussaha, M., Southwick, R., and Coussens, P.M. (1996). Genome for the Study of Gene Function. Viruses 10, E279.
Cloning and sequence analysis of a Marek’s disease virus origin binding Zhang, Z., Ma, C., Zhao, P., Duan, L., Chen, W., Zhang, F., and Cui, Z.
protein (OBP) reveals strict conservation of structural motifs among (2014). Construction of recombinant Marek’s disease virus (rMDV)
OBPs of divergent alphaherpesviruses. Virus Genes 13, 143–157. co-expressing AIV-H9N2-NA and NDV-F genes under control of MDV’s
Wu, T.F., Chen, H.H., and Wu, H. (2001). Functional characterization of own bi-directional promoter. PLOS ONE 9, e90677.
Marek’s disease virus (MDV) origin-binding protein (OBP): analysis of Zhao, Y., Xu, H., Yao, Y., Smith, L.P., Kgosana, L., Green, J., Petherbridge,
its origin-binding properties. Virus Genes 23, 227–239. L., Baigent, S.J., and Nair, V. (2011). Critical role of the virus-encoded
Xie, Q., Anderson, A.S., and Morgan, R.W. (1996). Marek’s disease virus microRNA-155 ortholog in the induction of Marek’s disease
(MDV) ICP4, pp38, and meq genes are involved in the maintenance of lymphomas. PLOS Pathog. 7, e1001305. https://doi.org/10.1371/
transformation of MDCC-MSB1 MDV-transformed lymphoblastoid journal.ppat.1001305.
cells. J. Virol. 70, 1125–1131. Zhu, L.A., and Weller, S.K. (1992a). The six conserved helicase motifs of
Xu, H., Yao, Y., Zhao, Y., Smith, L.P., Baigent, S.J., and Nair, V. (2008). Analysis the UL5 gene product, a component of the herpes simplex virus type 1
of the expression profiles of Marek’s disease virus-encoded microRNAs helicase-primase, are essential for its function. J. Virol. 66, 469–479.
by real-time quantitative PCR. J. Virol. Methods 149, 201–208. https:// Zhu, L.A., and Weller, S.K. (1992b). The UL5 gene of herpes simplex virus
doi.org/10.1016/j.jviromet.2008.02.005. type 1: isolation of a lacZ insertion mutant and association of the UL5
gene product with other members of the helicase-primase complex. J.
Virol. 66, 458–468.