Page 383 - Six Sigma Advanced Tools for Black Belts and Master Black Belts
P. 383

OTE/SPH
 OTE/SPH
          August 31, 2006
                              Char Count= 0
                         3:8
 JWBK119-23
        368            Statistical Process Control for Autocorrelated Processes
             ARL                               ARL
             400                               400
                                   AR 1 = 0.0                        AR 1 = 0.5
             300                               300
                                     SCC
              200                  Max Lambda  200
                                   Avg Lambda
             100                               100
               0                                0
                0   0.5  1   1.5  2   2.5  3     0   0.5  1   1.5  2   2.5  3
                        SHIFT in MEAN                    SHIFT in MEAN

              ARL                              ARL
             400                               400
                                   AR 1 = 0.75                       AR 1 = 0.9
             300                               300
             200                               200

             100                               100

               0                                0
                0   0.5  1   1.5  2   2.5  3     0   0.5  1   1.5  2   2.5  3
                        SHIFT in MEAN                     SHIFT in MEAN
                  Figure 23.8 ARL comparisons: SCC, λ LS,max and λ LS control charts.



        upgraded to handle SPC functions. Under such an integrated scheme the usefulness
        of the proposed procedure will be optimized.



                                      REFERENCES

         1. Alwan, L.C. and Roberts, H.V. (1988) Time-series modelling for statistical process control.
           Journal of Business and Economic Statistics, 16, 87--95.
         2. Wardell, D.G., Moskowitz, H. and Plante, R.D. (1994) Run-length distributions of special-
           cause control charts for correlated processes. Technometrics, 36, 3--17.
         3. Lu, C.W. and Reynolds, M.R. (1999) EWMA control charts for monitoring the mean of
           autocorrelated processes. Journal of Quality Technology, 31, 166--188.
         4. Lu, C.W. and Reynolds, M.R. (1999) Control charts for monitoring the mean and variance
           of autocorrelated processes. Journal of Quality Technology, 31, 259--274.
         5. Apley, D.W. and Shi, J. (1999) The GLRT for statistical process control of autocorrelated
           processes. IIE Transactions, 31, 1123--1134.
                                                       2
         6. Apley, D.W. and Tsung, F. (2002) The autoregressive T chart for monitoring univariate
           autocorrelated processes. Journal of Quality Technology, 34, 80--96.
         7. Castagliola, P. and Tsung, F. (2005) Autocorrelated SPC for non-normal situations. Quality
           and Reliability Engineering International, 21, 131--161.
         8. Testik, M.C. (2005) Model inadequacy and residuals control charts for autocorrelated pro-
           cesses. Quality and Reliability Engineering International, 21, 115--130.
         9. Montgomery, D.C. and Mastrangelo, C.M. (1991) Some statistical process control methods
           for autocorrelated data (with discussion). Journal of Quality Technology, 23, 179--204.
   378   379   380   381   382   383   384   385   386   387   388