Page 5 - Barisan Aritmatika - Mula Tua - 4183111064
P. 5

d.   Sisipan

                      Pada suatu barisan aritmetika dapat disisipan beberapa bilangan antara tiap dua suku yang
                 berurutan, sehingga bilangan semula bersama-sama dengan bilangan yang disisipkan tersebut
                 membentuk barisan aritmetika baru.

                 Misalnya :
                      Pada barisan  2,  11,  20   disisipkan 2 buah bilangan antara tiap dua suku yang berurutan
                      sehingga membentuk barisan aritmetika baru

                 Barisan aritmetika semula  2,                        11,                  20

                                                  ?       ?             ?        ?
                 Barisan aritmetika baru    2,          ,          ,    11,              ,             ,  20

                      Perhatikan bahwa suku pertama barisan aritmetika yang baru sama dengan suku pertama
                      barisan semula, yaitu a = 2, sedangkan suku ke-4 adalah 11, sehingga

                                   U 4  =  11
                       a + (4 – 1) b’  =  11   ( b’ menyatakan beda barisan yang baru)
                                2  +  3b’  = 11
                                   3b’  =  9
                                     b’  = 3
                     Jadi, barisan aritmetika yang baru adalah  2,  5,  8,  11,  14,  17,  20

               Dengan analogi cara di atas diperoleh,


                 Jika antara dua suku yang berurutan dari suatu barisan aritmetika disisipkan k buah bilangan,
                     sehingga terbentuk barisan aritmetika baru, maka berlaku


                              b’ =          dengan     b’  adalah beda barisan aritmetika baru

                                                   b   adalah beda barisan aritmetika semula
                                                   k   adalah  banyaknya bilangan yang disisipkan



                  CONTOH  5

               Diketahui barisan aritmetika  3,  19,  35,  …   dan antara tiap dua suku yang berurutan disisipkan
               3 buah bilangan sehingga terbentuk barisan aritmetika baru
               a.  Tentukan beda barisan aritmetika baru!
               b.  Tentukan suku ke-10  dari barisan aritmetika baru!

               Jawab:

               a.   Dari barisan aritmetika  3,  19,  35,  …    diperoleh suku pertama  a = 3  dan
                   beda  b = 19 – 3 = 16
                   Dengan menggunakan rumus sisipan untuk k = 3, maka diperoleh

                              b’  =



                              b’  =

                              b’  =  4

                       Jadi, beda barisan aritmetika baru adalah 4.






                                                                                                            5
                                                                                Barisan dan Deret Aritmetika
   1   2   3   4   5