Page 165 - Quantitative Data Analysis
P. 165
Quantitative Data Analysis
Simply Explained Using SPSS
Y'=0.4413+0.
Raw Score 5601X
̅
̅
2
2
X Y Y' Y' - (Y' - ) Y-Y' (Y-Y')
3 1 2.122 -2.128 4.530 -1.122 1.258
5 2 3.242 -1.008 1.016 -1.242 1.542
6 3 3.802 -0.448 0.201 -0.802 0.643
4 3 2.682 -1.568 2.460 0.318 0.101
5 3 3.242 -1.008 1.016 -0.242 0.058
4 4 2.682 -1.568 2.460 1.318 1.738
6 4 3.802 -0.448 0.201 0.198 0.039
8 4 4.922 0.672 0.452 -0.922 0.850
5 4 3.242 -1.008 1.016 0.758 0.575
7 4 4.362 0.112 0.013 -0.362 0.131
8 4 4.922 0.672 0.452 -0.922 0.850
8 5 4.922 0.672 0.452 0.078 0.006
7 5 4.362 0.112 0.013 0.638 0.407
9 5 5.482 1.232 1.518 -0.482 0.233
8 5 4.922 0.672 0.452 0.078 0.006
9 5 5.482 1.232 1.518 -0.482 0.233
10 6 6.042 1.792 3.212 -0.042 0.002
9 6 5.482 1.232 1.518 0.518 0.268
8 6 4.922 0.672 0.452 1.078 1.162
7 6 4.362 0.112 0.013 1.638 2.683
2
̅
∑X= ∑Y= ∑(Y'- ) 2 ∑ (Y-Y')
∑Y’= 85 =
136 85 =22.964
12.786
e) residual sum of squares?
Residual sum of square = SS res=∑ (Y - Y') 2 = 12.786
The Theory and Applications of Statistical Inferences 149