Page 167 - Fiber Optic Communications Fund
P. 167

148                                                               Fiber Optic Communications


                             +1V
                                m(t)



                                 0      T b   2T b  3T b   4T b  5T b   6T b   7T b



                             –1V

                            Figure 4.9  The DPSK signal corresponding to the binary data of Table 4.1.



                                NRZ data
                                                   m(t)   Phase   DPSK signal
                                 b(t)      XOR
                                                         modulator   Acos[2π f t + k m(t)]
                                                                           p
                                                                        c
                                         Delay T        Acos(2π f t)
                                                               c
                                              b
                                        Figure 4.10 Generation of a DPSK signal.



            scheme: take a product of the current bit (after demodulation) with the previous bit. If the product is negative,
            the transmitted data at the current bit is ‘1’. Otherwise, it is ‘0’.
              The differential encoding can be realized using a XOR gate and a delay circuit as shown in Fig. 4.10. Let
            us assign a voltage level of +1 V and −1 V to the logic levels of 1 and 0, respectively. Let m(t) be the encoded
            message signal. If the incoming binary data b(t) to be transmitted is 0 and the previous message bit (of m(t))
            is 0 (or −1 V), the current message bit will also be 0 since we introduce no phase shift relative to the previous
            message bit. If the binary data b(t) is 1 and the previous message bit is 0 (1), the current bit will be 1 (0) since
            we need to introduce a  phase shift (or inversion of the amplitude) with respect to the previous message bit.
            Thus, we have
                                              m(t)= b(t) ⊕ m(t − T ),                         (4.33)
                                                               b
            where ⊕ denotes the exclusive OR (XOR) operation. The truth table is shown in Table 4.2 and the waveforms
            for the input data b(t) and the message signal m(t) are shown in Fig. 4.11.




               Table 4.2  Truth table.
                          b(t)                      m(t − T )                     m(t)
                                                          b
               Logic level  Voltage level (V)  Logic level  Voltage level (V)  Logic level  Voltage level (V)

               0                −1             0             −1            0             −1
               0                −1             1              1            1              1
               1                  1            0             −1            1              1
               1                  1            1              1            0             −1
   162   163   164   165   166   167   168   169   170   171   172