Page 483 - Fiber Optic Communications Fund
P. 483

464                                                               Fiber Optic Communications


            where I is the mean current given by
                  0
                                              {      (                  )}
                                                                ∞
                                       √                       ∑
                                    I =  P Re   1 +   u  + 2   u                      (10.286)
                                    0      0            000          0mm
                                                              m=−∞
            and
                                       ∞
                                      ∑                   ∑
                                I =      b u lin,n  +      Re(u lmn )b b b ,        (10.287)
                                            n
                                                                          l m n
                                    n=−∞,n≠0         l+m−n=0,l≠0,m≠0
            where
                                                  √         2 2   2
                                           u lin,n  =  P exp (−n T ∕2T ).                 (10.288)
                                                     0
                                                              s
                                                                  0
            For BPSK, we have
                                                    ⟨b ⟩ = 0,                               (10.289)
                                                      n
                                                  ⟨b b ⟩ =  ,                             (10.290)
                                                    n m    nm
            where   is the Kronecker delta function. To calculate the variance, Eq. (10.287) is rewritten as
                   nm
                                          I = I  + I  + I   ,                       (10.291)
                                                lin  IFWM,d    IFWM,nd
            where I , I  IFWM,d,  and I IFWM,nd  represent random currents due to linear ISI, degenerate IFWM, and
                    lin
            non-degenerate IFWM, respectively. An IFWM triplet is degenerate if l = m. From Eq. (10.287), we have
                                                      ∞
                                                     ∑
                                              I lin  =  b u lin,n ,                     (10.292)
                                                           n
                                                   n=−∞,n≠0
                                                      ∑
                                         I IFWM,d  =    Re{u }b ,                     (10.293)
                                                                     n
                                                                 lln
                                                   l+m−n=0,l=m
                                                     ∑
                                   I IFWM,nd  = 2        Re{u lmn }b b b .            (10.294)
                                                                       l m n
                                                l+m−n=0,l<m,l≠m≠n
            The factor 2 is introduced to account for the fact that the summation is carried out only over the region of
            l < m. In Eqs. (10.293) and (10.294), the terms corresponding to intra-pulse SPM and IXPM are excluded.
            The variance of I lin  is         ∑ ∑
                                       <I 2  >=     < b b >u lin,m u lin,n ,          (10.295)
                                                         m n
                                          lin
                                                m≠0 n≠0
            Using Eq. (10.290), Eq. (10.295) simplifies to
                                                                 (      )
                                                                     2 2
                                             ∑    2       ∑       −m T s
                                        2
                                    <I  >=    u   = P    exp          ,                 (10.296)
                                        lin       lin,m  0           2
                                             m≠0          m≠0       T 0
                                           ∑          ∑
                                       2
                             2
                         <I      > =                     Re[u ]Re[u ′ l ′ n ′] < b b ′ >
                             IFWM,d                               lln    l      n n
                                        l+m−n=0,l=m l ′ +m ′ −n ′ =0,l ′ =m ′
                                           ∑
                                       2                  2
                                    =          (Re[u ]) .                               (10.297)
                                                       lln
                                        l+m−n=0,l=m
                                                             ′
                                                                               ′
            In Eq. (10.297), we have used Eq. (10.290) and when n = n , l has to be equal to l to satisfy l + m − n = 0
                ′
                     ′
                        ′
            and l + m − n = 0.
   478   479   480   481   482   483   484   485   486   487   488