Page 31 - CCFA Journal - Fourth Issue
P. 31

加中金融                                          Quant Corner 数量分析


    现实中,惯常的波动率曲面看上去与此大不相同。这将是我们                                   While in reality we know that our usual volatility surface looks very
    典型的 S&P500 波动率曲面:                                             different from that. This would be our typical S&P500 volatility surface:

























    所有现代随机波动率模型的根源都可以追溯到 Heston 在 1993年                           We  can  trace  the  root  of  all  modern  stochastic  volatility  models  to
    发表的论文,该论文提供了在随机波动率动态条件下为债券期                                   Heston’s 1993 paper, which offered a new, closed-form, approach for
    权和外汇期权定价的一种全新的封闭形式的模型和方法。                                     pricing bond options and foreign-exchange options under stochastic
                                                                  volatility dynamic.
    每个资产类别都有自己的细微差别和标准。因此,不同的资产
    类别采用不同的模型来反映资产的动态:                                            As not all asset classes were created equal, each asset class has its own
                                                                  nuances and standards, and therefore, different asset classes adopted
    利率类                                                           different models to reflect assets’ dynamic:

    利率以收益率曲线的形式建模。评估债券和利率期权的适当模                                   Interest Rates
    型,例如利率掉期或掉期期权,应该包含收益率曲线期限结构                                   Interest  rates  are  modeled  in a  form  of  yield  curve.  An  appropriate
    的动态变化。该类模型自引入以来,其标准模型一直是 Vasicek                              model  to  evaluate  bonds  ,  and  options  on  interest  (like  options  on
    (1977)和 Hull-White(1990),直到引入 SABR 模型(Hagan                   interest rate swap, or swaptions) should incorporate the dynamic of the
    等,2002)后开始变化。                                                 yield curve term structure. Since introduced, the standard models have
                                                                  been Vasicek (1977) and Hull-White (1990), until the introduction of
    SABR 模型是两个因子的随机模型,其中每个参数控制波动率                                 SABR model (Hagan et al., 2002)
    (alpha)动态的不同方面:
                                                                  The  SABR  model  is  a  two-factor  stochastic  model,  where  each
    Beta:Beta 控制波动率分布(或 vol-of-vol)的方差和形状。                        parameter controls a different aspect of the volatility (alpha) dynamic:
                                                                  Beta-  The  beta  controls  the  variance  and  shape  of  the  volatility
    Rho:rho 是在底层资产当前动态和波动率动态之间关联的参数                               distribution(or vol-of-vol)
    (即控制波动率分布的斜率/偏斜)。
                                                                  Rho- The rho is the parameter that correlates between the underlying
    由于利率市场在某种意义上是独特的,即现在许多资产都以负                                   spot dynamic and the volatility dynamic (i.e. controls the slope/skew of
    利率交易(或在正利率与负利率之间交替),因此 Black-                                 volatility distribution).
    Scholes 不能用于这一类衍生品的定价(因为它假设底层价格为
    对数正态分布) 。为了适应这种独特的特性,从业者倾向于使                                  As the Interest Rates market is unique in a sense that many assets are
                                                                  trading nowadays with negative rates (or alternate between positive rates
    用 Bachelier 模型对这些资产定价。今年早些时候,在 WTI 即月                         to negative rates), Black-Scholes cannot be used for derivatives pricing
    合约跌至-40 美元之后,CME 将其定价模型更改为 Bachelier 模                        (as  it  assumes  log-normal  distribution  of  underlying  price).  To
    型,以应对负资产的冲击。                                                  accommodate that unique dynamic practitioners tend to use Bachelier
                                                                  model for pricing these assets. Earlier this year, in the aftermath WTI
    外汇类                                                           front-month contract’s collapse to -40$ CME changed its pricing model
                                                                  to Bachelier model to accommodate negative strikes.
    外汇期权市场主要是场外交易,它采用了可以处理第一代,第
    二代奇异期权的模型,因为它们本质上是定制的。大多数外汇                                   Foreign Exchange
    从业者使用的模型称为 Vanna-Volga 定价(Malz,1997; Lipton                   Foreign  Exchange  option  market  is  mainly  traded  OTC  (over  the
    等,McGhee,2002; Wystup,2003)。该定价模型在外汇市场                        counter),  and  as  such  it  adopted  a  model  that  can  handle  1st,  2nd
    中广泛用于对特殊期权,如界限期权和数字支付期权(单/非                                   generation exotic options (as these are more bespoke in their nature).
    触摸,欧洲数字式期权等)进行定价。                                             The model that most FX practitioners use is known as Vanna-Volga
                                                                  pricing  (Malz  1997,  Lipton  et.  McGhee  2002,  Wystup  2003).  This
    Vanna-Volga 定价模型的本质是:假设各类期权市场报价,比如                            pricing model is widely used in FX market to price exotic options, like
    Vanna 的风险逆转/领口期权,Volga 的蝴蝶差价,反映了特定                            barrier options, and digital payout options (one/no touch, European
                                                                  Digital, etc.).
    资产的隐含风险中性概率分布的情况下,该模型能够量化相对
    于 vega 的二阶导数的对冲成本(即 Vanna:dVega / dSpot 和                     The essence of the Vanna-Volga pricing model, is the ability to quantify
    Volga:dVega / dVol)。                                          the hedging cost of the 2nd order derivatives with respect to Vega (i.e.
                                                                  Vanna- dVega/dSpot , and Volga- dVega/dVol), under the assumption
                                                                  that the quoted options strategies (Risk Reversal/Collar for Vanna, and
                                                                  Butterfly spread for Volga) reflect the implied risk neutral probability
                                                                  for the particular asset.


                                            CCFA JOURNAL OF FINANCE   June 2021
                                                                                                     Page 31     第31页
   26   27   28   29   30   31   32   33   34   35   36