Page 58 - Logika Matematika
P. 58

1
                                                                                       1
                                                                                           4
                  5. Misalkan m dan n adalah bilangan bulat positif yang memenuhi  + =  .
                                                                                           7
                                2
                            2
                    Nilai m  + n  adalah ...
                     1    1   4
                       + =           →      m + n = 4x     dan    mn = 7x
                              7
                     Artinya bahwa m + n kelipatan 4 dan mn kelipatan 7, sehingga:
                     Jawab:

                     1    1   4                     1   1    8                m = 14
                       + =                  →         + =
                              7                             14
                                                                               n = 2
                          1
                     1  + =   1  +  7       →       1  + =   1  +
                                                        1
                                                                 1
                              14   14                       14   2
                                     2
                           2
                       2
                                 2
                     m  + n  = 14  + 2  = 196 + 4 = 200
                                2
                                     2
                     Jadi, nilai m  + n  = 200
                 6.   Diberikan dua buah bilangan:
                     x = 201420142014  2015201520152015

                     y = 201520152015  2014201420142014

                     Hitunglah nilai dari (x – y) 2015 .

                     Jawab:

                     x  = 201420142014  2015201520152015


                        = 2014(100010001)  2015(1000100010001)

                     y  = 201520152015  2014201420142014

                        = = 2015(100010001)  2014(1000100010001)

                     Ternyata x = y, sehingga (x – y) 2015  = 0 2015  = 0. Jadi,

                     nilai dari (x – y) 2015  = 0.



                  7.  Saat ini umur Agus dan umur Fauzan kurang dari 100 tahun. Jika umur Agus dan umur
                     Fauzan ditulis secara berurutan, maka diperoleh suatu bilangan empat digit (angka)
                     yang merupakan kuadrat sempurna. Dua puluh tiga tahun kemudian, jika umur mereka
                     ditulis dengan cara yang sama, maka diperoleh bilangan empat digit lain yang juga
                     merupakan  kuadrat  sempurna.  Jika  umur  mereka  diasumsikan  merupakan  bilangan
                     bulat positif, berapakah umur mereka saat ini?



                     Jawab:




                                                                                                       57
   53   54   55   56   57   58   59   60   61   62   63