Page 245 - FUNDAMENTALS OF COMPUTER
P. 245

NPP













                  NPP               Number System, Boolean Algebra and Logic Circuits              245


                  (c) The given expression is   F = Σm (4, 5, 7).  (c) ì`§OH$ F = Σm (4, 5, 7) H$m K-_on {ZåZmZwgma
                      The K-map for the above expression can      ~Zm`m Om gH$Vm h¡:
                      be drawn as:
                                               A  B .C  00  01   11    10



                                               0    0      0     0      0


                                                1   1      1     1      0

                  SOP Form Solution                           SOP Form Solution
                      Take the same K-map and use ‘1’ to form     SOP \$m°_©: Bg hoVw 1 Ho$ J«wn boH$a hb H$aZo na:
                  groups:

                                                 A  B C  00  01    11    10



                                                 0    0      0     0      0


                                                 1    1      1     1      0


                      The simplified expression in SOP form can   gab SOP ê$n {ZåZmZwgma àmßV hmoJm:
                  be written as:

                                                      F =   B . A  +  C . A
                  POS Form Solution                           POS Form Solution
                      Take the same K-map and use ‘0’ to form     g_mZ K-_on boZo na VWm 0 Ho$ g_yh ~ZmZo na:
                  groups.

                                                 A  B C  00  01    11    10


                                                 0    0      0     0      0


                                                 1    1      1     1      0


                      The simplified expression from one quad     EH$ ŠdmS> VWm EH$ noAa go àmßV gab ì`§OH$ Bg
                  and one pair is:     F =  A . (B +  C )     àH$ma hmoJm- F =  A . (B +  C )
   240   241   242   243   244   245   246   247   248   249   250