Page 249 - FUNDAMENTALS OF COMPUTER
P. 249

NPP













                  NPP               Number System, Boolean Algebra and Logic Circuits              249


                  POS Form Solution:                          POS \$m°_© gm°ë`yeZ
                      Consider the same karnaugh map and use      Cgr K-_on H$mo boH$a 0 Ho$ J«wn ~ZmAmo:
                  ‘0’ to make pair, quads etc.
                                                 A B  C D  00  01  11    10


                                                  00   0     0     1     1


                                                  01   1     1     0     1

                                                  11   0     1     0     1


                                                  10   1     0     1     1


                      There are three Pairs and one single. The   VrZ no`a d EH$ qgJb go {ZåZmZwgma gab ì`§OH$
                  expression in POS from can be obtained as fol-  àmßV hmoJm:
                  lows:

                                        F =  (A+ B+ C+ D ) (A.  + B+ C ) (B.  + C+ D ) (B.  + C+ D )
                  Implementation using Universal Gates        `y{Zdg©b JoQ>m| go Bpåßb_|Q>oeZ
                      The simplified expressions gives rise to two  `y{Zdg©c JoQ>m| go Xmo àH$ma Ho$ n[anW àmßV hm|Jo:
                  types of implementations:
                  (i)  NAND-NAND Implementation: Taking       (i)  NAND Bpåßb_|Q>oeZ _| SOP ê$n boZo na
                      SOP Form
                                           F =  D . C  +  C . B  +  C . B . A  +  D . C . B  +  D . B . A
                      First draw the logic  circuit using Basic   _yb^yV JoQ>m| H$m n[anW ~ZmZo na:
                  Gates:
                                        A     B     C     D










                                                                                F
   244   245   246   247   248   249   250   251   252   253   254