Page 249 - FUNDAMENTALS OF COMPUTER
P. 249
NPP
NPP Number System, Boolean Algebra and Logic Circuits 249
POS Form Solution: POS \$m°_© gm°ë`yeZ
Consider the same karnaugh map and use Cgr K-_on H$mo boH$a 0 Ho$ J«wn ~ZmAmo:
‘0’ to make pair, quads etc.
A B C D 00 01 11 10
00 0 0 1 1
01 1 1 0 1
11 0 1 0 1
10 1 0 1 1
There are three Pairs and one single. The VrZ no`a d EH$ qgJb go {ZåZmZwgma gab ì`§OH$
expression in POS from can be obtained as fol- àmßV hmoJm:
lows:
F = (A+ B+ C+ D ) (A. + B+ C ) (B. + C+ D ) (B. + C+ D )
Implementation using Universal Gates `y{Zdg©b JoQ>m| go Bpåßb_|Q>oeZ
The simplified expressions gives rise to two `y{Zdg©c JoQ>m| go Xmo àH$ma Ho$ n[anW àmßV hm|Jo:
types of implementations:
(i) NAND-NAND Implementation: Taking (i) NAND Bpåßb_|Q>oeZ _| SOP ê$n boZo na
SOP Form
F = D . C + C . B + C . B . A + D . C . B + D . B . A
First draw the logic circuit using Basic _yb^yV JoQ>m| H$m n[anW ~ZmZo na:
Gates:
A B C D
F