Page 23 - KELOMPOK 4 APLIKASI TURUNAN
P. 23
f(x) = x3 – 9x2 + 24x – 10
f’(x) = 3x2 – 18x + 24
maka:
f’(x) = 0
3x2 – 18x + 24 = 0
x2 – 16x + 8 = 0
(x – 4)(x – 2) = 0
x1 = 2 dan x2 = 4
Uji : x = 0 maka f’(0) = 3(0)2 – 18(0) + 24 = 24 > 0 (fungsi naik)
Uji : x = 3 maka f’(3) = 3(3)2 – 18(3) + 24 = –3 < 0 (fungsi turun)
Uji : x = 5 maka f’(4) = 3(5)2 – 18(5) + 24 = 9 > 0 (fungsi naik)
Sehingga interval fungsi naik pada x < 2 atau x > 4
interval fungsi turun pada 2 < x < 4
Titik stasionernya :
x = 2 maka f(2) = (2)3 – 9(2)2 + 24(2) – 10 = 10 , Titik maksimum di
(2, 10)
x = 4 maka f(4) = (4)3 – 9(4)2 + 24(4) – 10 = –5 , Titik minimum di
(4, –42)
Langkah 3 : Menentukan interval cekung atas dan cekung bawah
f(x) = x3 – 9x2 + 24x – 10
f’(x) = 3x2 – 18x + 24
f’’(x) = 6x – 18
maka f’’(x) = 0
6x – 18 = 0
6x = 18 maka x = 3
APLIKASI KALKULUS 17