Page 132 - Science
P. 132
RESEARCH | REPORT
in vivo, we reconstituted irradiated B6 mice with rapidly activate or repress these innate immune ACKNOWLEDGMENTS
congenically marked Adrb2 +/+ and Adrb2 −/− BM cells to protect the host against diverse inflam- We thank the D. Artis lab members and the G. F. Sonnenberg lab
cells andcomparedthe proliferationof Adrb2 +/+ matory stimuli. members for discussion and critical reading of the manuscript. We
and Adrb2 −/− ILC2s in the same chimeric mouse also thank D. Mucida (The Rockefeller University) and P. A. Muller
(The Rockefeller University) for advising on TH staining, S. Thomas
(Fig. 4H). At steady state, the chimeric mice had REFERENCES AND NOTES (University of Pennsylvania), G. Karsenty (Columbia University),
similar frequencies of Adrb2 +/+ and Adrb2 −/− 1. B. Pulendran, D. Artis, Science 337, 431–435 (2012). P. Liu (the Wellcome Trust Sanger Institute), and J. Sun (Memorial
2. H. Hammad, B. N. Lambrecht, Immunity 43,29–40
ILC2s, in accordance with comparable ILC2 fre- (2015). Sloan Kettering Cancer Center) for mice. We also thank D. Farber
quencies in naive Adrb2 +/+ and Adrb2 −/− mice (fig. 3. R. M. Locksley, Cell 140, 777–783 (2010). (Columbia University) and LiveOnNY for human lung samples.
Funding: This work was supported by grants from The Naito
S2, B to D). However, after N. brasiliensis infec- 4. R. M. Anthony, L. I. Rutitzky, J. F. Urban Jr., M. J. Stadecker, Foundation (to S.M.), the Japan Society for the Promotion of
W. C. Gause, Nat. Rev. Immunol. 7, 975–987 (2007).
tion, the frequencies of Adrb2 −/− ILC2s were in- 5. D. Artis, H. Spits, Nature 517, 293–301 (2015). Science (JSPS) Overseas Research Fellowships (to S.M.), the Novo
creased compared to the frequencies of Adrb2 +/+ 6. A. B. Molofsky, A. K. Savage, R. M. Locksley, Immunity 42, Nordic Foundation (grant 14052 to J.B.M.), the German Research
ILC2s (Fig. 4H), indicating that b 2 AR signaling 1005–1019 (2015). Foundation (grant KL 2963/1-1 to C.S.N.K), an Australian
National Health and Medical Research Commission Early Career
inhibits ILC2 proliferation in a cell-intrinsic man- 7. G. Eberl, M. Colonna, J. P. Di Santo, A. N. McKenzie, Science Fellowship (to L.C.R.), the Jill Roberts Institute (G.G.P.), a
ner in vivo. 348, aaa6566 (2015). Weill Cornell Medicine Pre-Career Award (to L.A.M.), the NIH
8. K. Moro et al., Nature 463, 540–544 (2010).
Collectively, these results reveal a previously 9. D. R. Neill et al., Nature 464, 1367–1370 (2010). (grants F32-DK109630-01 to N.A.Y.; F32-AI134018-01 to L.A.M.;
unrecognized regulatory circuit that operates 10. A. E. Price et al., Proc. Natl. Acad. Sci. U.S.A. 107, 11489–11494 and AI061570, AI087990, AI074878, AI083480, AI095466,
AI095608, AI102942, and AI097333 to D.A.), a European
between the adrenergic nervous system and the (2010). Research Council Advanced Grant (742883 to H.-R.R.), the
11. H. Morita, K. Moro, S. Koyasu, J. Allergy Clin. Immunol. 138,
innate immune system to control type 2 inflam- Burroughs Wellcome Fund (grant to D.A.), and the Crohn’s&
1253–1264 (2016).
mation at multiple mucosal sites. Specifically, 12. D. L. Felten, S. Y. Felten, S. L. Carlson, J. A. Olschowka, Colitis Foundation of America (grant to D.A.). Author contributions:
signaling through b 2 AR negatively regulates ILC2 S. Livnat, J. Immunol. 135 (suppl.), 755s–765s (1985). S.M., J.R.B., A.-L.F., J.B.M., C.S.N.K., L.C.R., L.A.M., and D.A.
designed and performed the research. S.M., C.S.N.K., G.G.P.,
proliferation and effector function. Given the 13. S. Livnat, S. Y. Felten, S. L. Carlson, D. L. Bellinger, D. L. Felten, N.A.Y., and D.A. analyzed the data. H.-R.R. provided the Il7r cre
J. Neuroimmunol. 10,5–30 (1985).
importance of ILC2s in driving type 2 immune mice. S.M. and D.A. wrote the manuscript with input from the
14. J. B. Furness, Nat. Rev. Gastroenterol. Hepatol. 9, 286–294
responses (10, 26, 27) and the altered b 2 AR ex- (2012). other authors. Competing interests: The authors declare no
pression levels on ILC2s during inflammation, it 15. E. M. Sternberg, Nat. Rev. Immunol. 6, 318–328 (2006). competing interests. Data and materials availability: Data
presented in this manuscript are tabulated in the main paper
appears that b 2 AR may function as a molecular 16. J. C. Nussbaum et al., Nature 502, 245–248 (2013). and in the supplementary materials. RNA-seq data are deposited Downloaded from
rheostat to fine-tune the ILC2 response, thus con- 17. S. Talbot et al., Neuron 87, 341–354 (2015). under accession number GSE108884 in the Gene Expression
18. L. Galle-Treger et al., Nat. Commun. 7, 13202 (2016).
trolling the balance between promotion of host- 19. I. J. Elenkov, R. L. Wilder, G. P. Chrousos, E. S. Vizi, Omnibus database.
protective acute ILC2 responses and prevention Pharmacol. Rev. 52, 595–638 (2000).
of chronic pathologic type 2 inflammation. In- 20. V. Cardoso et al., Nature 549, 277–281 (2017). SUPPLEMENTARY MATERIALS
triguingly, in contrast to the adrenergic-mediated 21. C. S. N. Klose et al., Nature 549, 282–286 (2017). www.sciencemag.org/content/359/6379/1056/suppl/DC1
22. A. Wallrapp et al., Nature 549, 351–356 (2017).
negative regulation observed here, recent studies 23. S. Ibiza et al., Nature 535, 440–443 (2016). Materials and Methods
Figs. S1 to S3
have identified cholinergic neurons as potent 24. E. C. Mackley et al., Nat. Commun. 6, 5862 (2015). Table S1
activators of intestinal and lung ILC2s through 25. T. Hoyler et al., Immunity 37, 634–648 (2012). References (30–45)
the production of the neuropeptide neuromedin 26. S. H. Wong et al., Nat. Immunol. 13, 229–236 (2012). 30 April 2017; resubmitted 15 November 2017 http://science.sciencemag.org/
27. C. J. Oliphant et al., Immunity 41, 283–295 (2014).
U(20–22). Thus, the mammalian nervous system 28. P. Panina-Bordignon et al., J. Clin. Invest. 100, 1513–1519 Accepted 18 January 2018
appears to have evolved dual mechanisms to (1997). 10.1126/science.aan4829
on March 1, 2018
Moriyama et al., Science 359, 1056–1061 (2018) 2 March 2018 6of 6

