Page 100 - BUKU 1-3_Neat
P. 100

17
                                                          3
                                                        ( )( )      3
                                      (2) =   (   = 2) =  2  0  =
                                                           20
                                                          ( )      190
                                                            2

                  Maka, distribusi peluang dari X adalah
                          x                0                 1                2

                                           68               51                3
                           (  )
                                           95               190              190


                  Apa itu distribusi peluang? Akan kita bahas selanjutnya.


                  Variabel Acak Normal Standar


                  Variabel  acak  normal  x  distandarisasi  dengan  menyatakan  nilainya

                  sebagai  jumlah  simpangan  baku  yang  terletak  di  kiri  atau  kanan  dari
                  mean m. Ini benar-benar hanya perubahan dalam satuan ukuran yang kita

                  gunakan,  seolah-olah  kita  mengukur  dalam  inci,  bukan  dalam
                  sentimeter! Variabel acak normal standar, z, didefinisikan sebagai



                  Z =    −    atau setara dengan, X =     +      
                         

                  Dari rumus z, kita dapat menarik kesimpulan berikut:


                   •  Jika x lebih kecil dari mean   , nilai z adalah negatif.

                   •  Jika x lebih besar dari mean   , nilai z positif

                   •  Jika x =   , nilai z = 0.


                     Distribusi probabilitas dengan nilai mean sama dengan 0 dan standar
                  deviasi  sama  dengan  1  maka  distribusi  ini  disebut  dengan  distribusi

                  normal terstandarisasi. Nilai z di sisi kiri kurva adalah negatif, sedangkan
                  nilai di sisi kanan adalah positif.




                                                         Pengantar Metode Statistika | 93
   95   96   97   98   99   100   101   102   103   104   105