Page 399 - Avian Virology: Current Research and Future Trends
P. 399

390  |  Vervelde and Kaufman
          Bottazzi, B., Doni, A., Garlanda, C., and Mantovani, A. (2010). An   early inflammatory response in chickens and ducks. Avian Pathol. 42,
            integrated view of humoral innate immunity: pentraxins as a paradigm.   347–364. https://doi.org/10.1080/03079457.2013.807325
            Annu. Rev. Immunol.  28, 157–183. https://doi.org/10.1146/  Cridland, J.A., Curley, E.Z., Wykes, M.N., Schroder, K., Sweet, M.J.,
            annurev-immunol-030409-101305                          Roberts, T.L., Ragan, M.A., Kassahn, K.S., and Stacey, K.J. (2012). The
          Bowie, A.G., and Haga, I.R. (2005). The role of Toll-like receptors in the   mammalian PYHIN gene family: phylogeny, evolution and expression.
            host response to viruses. Mol. Immunol. 42, 859–867.   BMC Evol. Biol. 12, 140.
          Briles, W.E., Stone, H.A., and Cole, R.K. (1977). Marek’s disease: effects of   Cumberbatch, J.A., Brewer, D., Vidavsky, I., and Sharif, S. (2006). Chicken
            B histocompatibility alloalleles in resistant and susceptible chicken lines.   major histocompatibility complex class II molecules of the B haplotype
            Science 195, 193–195.                                  present self and foreign peptides. Anim. Genet. 37, 393–396.
          Briles, W.E., Briles, R.W., Taffs, R.E., and Stone, H.A. (1983). Resistance   Daviet, S., Van Borm, S., Habyarimana, A., Ahanda, M.L., Morin, V., Oudin,
            to a malignant lymphoma in chickens is mapped to subregion of major   A., Van Den Berg, T., and Zoorob, R. (2009). Induction of Mx and PKR
            histocompatibility (B) complex. Science 219, 977–979.  failed to protect chickens from H5N1 infection. Viral Immunol.  22,
          Briles, W.E., Goto, R.M., Auffray, C., and Miller, M.M. (1993). A polymorphic   467–472. https://doi.org/10.1089/vim.2009.0053
            system related to but genetically independent of the chicken major   Davison,  F., and  Nair,  V. (2005).  Use of  Marek’s disease vaccines:  could
            histocompatibility complex. Immunogenetics 37, 408–414.  they be driving the virus to increasing virulence? Expert Rev. Vaccines
          Brownlie, R., Zhu, J., Allan, B., Mutwiri, G.K., Babiuk, L.A., Potter, A., and   4, 77–88.
            Griebel, P. (2009). Chicken TLR21 acts as a functional homologue to   Drews, A., Strandh, M., Råberg, L., and Westerdahl, H. (2017). Expression
            mammalian TLR9  in the  recognition  of CpG  oligodeoxynucleotides.   and phylogenetic analyses reveal paralogous lineages of putatively classical
            Mol.  Immunol.  46,  3163–3170.  https://doi.org/10.1016/j.  and non-classical MHC-I genes in three sparrow species (Passer). BMC
            molimm.2009.06.002                                     Evol. Biol. 17, 152. https://doi.org/10.1186/s12862-017-0970-7
          Broz, P., and Monack, D.M. (2013). Newly described pattern recognition   Eimes, J.A., Reed, K.M., Mendoza, K.M., Bollmer, J.L., Whittingham, L.A.,
            receptors team up against intracellular pathogens. Nat. Rev. Immunol.   Bateson, Z.W., and Dunn, P.O. (2013). Greater prairie chickens have
            13, 551–565. https://doi.org/10.1038/nri3479           a compact MHC-B with a single class IA locus. Immunogenetics  65,
          Bumstead, N. (1998). Genomic mapping of resistance to Marek’s disease.   133–144. https://doi.org/10.1007/s00251-012-0664-7
            Avian Pathol. 27, s78–s81.                          Ekblom, R., Stapley, J., Ball, A.D., Birkhead, T., Burke, T., and Slate, J. (2011).
          Butter, C., Staines, K., van Hateren, A., Davison, T.F., and Kaufman, J. (2013).   Genetic mapping of the major histocompatibility complex in the zebra
            The peptide motif of the single dominantly expressed class I molecule   finch (Taeniopygia guttata). Immunogenetics 63, 523–530. https://doi.
            of the chicken MHC can explain the response to a molecular defined   org/10.1007/s00251-011-0528-6
            vaccine of infectious bursal disease virus (IBDV). Immunogenetics 65,   Esmailnejad, A., Nikbakht Brujeni, G., and Badavam, M. (2017). LEI0258
            609–618. https://doi.org/10.1007/s00251-013-0705-x     microsatellite variability and its  association with humoral and cell
          Calnek, B.W. (1985). Genetic resistance. In Marek’s Disease, L.N. Payne, ed.   mediated immune  responses in broiler chickens. Mol. Immunol.  90,
            (Martinus Nijhoff Publishing, New York, NY), pp. 293–328.  22–26.
          Chakraborty, P., Vervelde, L., Dalziel, R.G., Wasson, P.S., Nair, V., Dutia, B.M.,   Früh, K., Gruhler, A., Krishna, R.M., and Schoenhals, G.J. (1999). A
            and Kaiser, P. (2017). Marek’s disease virus infection of phagocytes: a de   comparison of viral immune escape strategies targeting the MHC class
            novo in vitro infection model. J. Gen. Virol. 98, 1080–1088. https://doi.  I assembly pathway. Immunol. Rev. 168, 157–166.
            org/10.1099/jgv.0.000763                            Fulton, J.E., Thacker, E.L., Bacon, L.D., and Hunt, H.D. (1995). Functional
          Chan,  W.F.,  Parks-Dely,  J.A.,  Magor,  B.G.,  and  Magor,  K.E.  (2016).   analysis of avian class I (BFIV) glycoproteins by epitope tagging and
            The minor MHC  class  I gene  UDA of  ducks  is regulated  by let-7   mutagenesis in vitro. Eur. J. Immunol.  25, 2069–2076. https://doi.
            microRNA.  J. Immunol.  197, 1212–1220.  https://doi.org/10.4049/  org/10.1002/eji.1830250740
            jimmunol.1600332                                    Galani,  I.E.,  and  Andreakos,  E.  (2015).  Neutrophils  in  viral  infections:
          Chang, L., He, S., Mao, D., Liu, Y., Xiong, Z., Fu, D., Li, B., Wei, S., Xu, X., Li,   Current concepts and caveats. J. Leukoc. Biol. 98, 557–564. https://doi.
            S., et al. (2016). Signatures of crested ibis mhc revealed by recombination   org/10.1189/jlb.4VMR1114-555R
            screening and short-reads assembly strategy. PLOS ONE 11, e0168744.   Galani, I.E., Koltsida, O., and Andreakos, E. (2015). Type III interferons
            https://doi.org/10.1371/journal.pone.0168744           (IFNs): Emerging Master Regulators of Immunity. Adv. Exp. Med. Biol.
          Chappell, P., Meziane,  e.l.K., Harrison, M.,  Magiera, Ł.,  Hermann, C.,   850, 1–15. https://doi.org/10.1007/978-3-319-15774-0_1
            Mears, L., Wrobel, A.G., Durant, C., Nielsen, L.L., Buus, S., et al. (2015).   Galani, I.E., Triantafyllia, V., Eleminiadou, E.E., Koltsida, O., Stavropoulos,
            Expression levels of MHC class I molecules are inversely correlated   A., Manioudaki, M., Thanos, D., Doyle, S.E., Kotenko, S.V., Thanopoulou,
            with promiscuity of peptide binding. Elife  4, e05345. https://doi.  K., et al. (2017). Interferon-λ mediates non-redundant front-line antiviral
            org/10.7554/eLife.05345                                protection against influenza virus infection without compromising host
          Chen, L.C., Lan, H., Sun, L., Deng, Y.L., Tang, K.Y., and Wan, Q.H. (2015).   fitness. Immunity 46, 875–890.e6.
            Genomic organization of the crested ibis MHC provides new insight   Garcia-Camacho, L., Schat, K.A., Brooks, R., and Bounous D.I. (2003).
            into ancestral avian MHC structure. Sci. Rep.  5, 7963. https://doi.  Early cell-mediated immune responses to Marek’s disease virus in two
            org/10.1038/srep07963                                  chicken lines with defined major histocompatibility complex antigens.
          Chen, S., Cheng, A., and Wang, M. (2013). Innate sensing of viruses by   Vet. Immunol. Immunopathol. 95, 145–153.
            pattern recognition receptors in birds. Vet. Res.  44, 82. https://doi.  García-Sastre, A. (2011). Induction and evasion of type I interferon
            org/10.1186/1297-9716-44-82                            responses by influenza viruses. Virus Res.  162, 12–18. https://doi.
          Collisson, E., Griggs, L., and Drechsler, Y. (2017). Macrophages from   org/10.1016/j.virusres.2011.10.017
            disease resistant B2 haplotype chickens activate T lymphocytes more   Gazit, R., Gruda, R., Elboim, M., Arnon, T.I., Katz, G., Achdout, H., Hanna,
            effectively than macrophages from disease susceptible B19 birds. Dev.   J., Qimron, U., Landau, G., Greenbaum, E., et al. (2006). Lethal influenza
            Comp. Immunol. 67, 249–256.                            infection in the absence of the natural killer cell receptor gene Ncr1. Nat.
          Cooper, M.A., Fehniger, T.A., Fuchs, A., Colonna, M., and Caligiuri, M.A.   Immunol. 7, 517–523.
            (2004). NK cell and DC interactions. Trends Immunol. 25, 47–52.  Genovese, K.J., He, H., Swaggerty, C.L., and Kogut, M.H. (2013). The
          Coppo, M.J., Hartley, C.A., and Devlin, J.M. (2013). Immune responses to   avian heterophil. Dev. Comp. Immunol.  41, 334–340. https://doi.
            infectious laryngotracheitis virus. Dev. Comp. Immunol. 41, 454–462.   org/10.1016/j.dci.2013.03.021
            https://doi.org/10.1016/j.dci.2013.03.022           Giotis, E.S., Robey, R.C., Skinner, N.G., Tomlinson, C.D., Goodbourn, S., and
          Cornelissen, J.B., Post, J., Peeters, B., Vervelde, L., and Rebel, J.M. (2012).   Skinner, M.A. (2016). Chicken interferome: avian interferon-stimulated
            Differential innate responses of chickens and ducks to low-pathogenic   genes identified by microarray and RNA-seq of primary chick embryo
            avian influenza. Avian Pathol. 41, 519–529. https://doi.org/10.1080/0  fibroblasts treated with a chicken type I interferon (IFN-α). Vet. Res. 47,
            3079457.2012.732691                                    75. https://doi.org/10.1186/s13567-016-0363-8
          Cornelissen, J.B., Vervelde, L., Post, J., and Rebel, J.M. (2013). Differences
            in highly pathogenic avian influenza viral pathogenesis and associated
   394   395   396   397   398   399   400   401   402   403   404