Page 399 - Avian Virology: Current Research and Future Trends
P. 399
390 | Vervelde and Kaufman
Bottazzi, B., Doni, A., Garlanda, C., and Mantovani, A. (2010). An early inflammatory response in chickens and ducks. Avian Pathol. 42,
integrated view of humoral innate immunity: pentraxins as a paradigm. 347–364. https://doi.org/10.1080/03079457.2013.807325
Annu. Rev. Immunol. 28, 157–183. https://doi.org/10.1146/ Cridland, J.A., Curley, E.Z., Wykes, M.N., Schroder, K., Sweet, M.J.,
annurev-immunol-030409-101305 Roberts, T.L., Ragan, M.A., Kassahn, K.S., and Stacey, K.J. (2012). The
Bowie, A.G., and Haga, I.R. (2005). The role of Toll-like receptors in the mammalian PYHIN gene family: phylogeny, evolution and expression.
host response to viruses. Mol. Immunol. 42, 859–867. BMC Evol. Biol. 12, 140.
Briles, W.E., Stone, H.A., and Cole, R.K. (1977). Marek’s disease: effects of Cumberbatch, J.A., Brewer, D., Vidavsky, I., and Sharif, S. (2006). Chicken
B histocompatibility alloalleles in resistant and susceptible chicken lines. major histocompatibility complex class II molecules of the B haplotype
Science 195, 193–195. present self and foreign peptides. Anim. Genet. 37, 393–396.
Briles, W.E., Briles, R.W., Taffs, R.E., and Stone, H.A. (1983). Resistance Daviet, S., Van Borm, S., Habyarimana, A., Ahanda, M.L., Morin, V., Oudin,
to a malignant lymphoma in chickens is mapped to subregion of major A., Van Den Berg, T., and Zoorob, R. (2009). Induction of Mx and PKR
histocompatibility (B) complex. Science 219, 977–979. failed to protect chickens from H5N1 infection. Viral Immunol. 22,
Briles, W.E., Goto, R.M., Auffray, C., and Miller, M.M. (1993). A polymorphic 467–472. https://doi.org/10.1089/vim.2009.0053
system related to but genetically independent of the chicken major Davison, F., and Nair, V. (2005). Use of Marek’s disease vaccines: could
histocompatibility complex. Immunogenetics 37, 408–414. they be driving the virus to increasing virulence? Expert Rev. Vaccines
Brownlie, R., Zhu, J., Allan, B., Mutwiri, G.K., Babiuk, L.A., Potter, A., and 4, 77–88.
Griebel, P. (2009). Chicken TLR21 acts as a functional homologue to Drews, A., Strandh, M., Råberg, L., and Westerdahl, H. (2017). Expression
mammalian TLR9 in the recognition of CpG oligodeoxynucleotides. and phylogenetic analyses reveal paralogous lineages of putatively classical
Mol. Immunol. 46, 3163–3170. https://doi.org/10.1016/j. and non-classical MHC-I genes in three sparrow species (Passer). BMC
molimm.2009.06.002 Evol. Biol. 17, 152. https://doi.org/10.1186/s12862-017-0970-7
Broz, P., and Monack, D.M. (2013). Newly described pattern recognition Eimes, J.A., Reed, K.M., Mendoza, K.M., Bollmer, J.L., Whittingham, L.A.,
receptors team up against intracellular pathogens. Nat. Rev. Immunol. Bateson, Z.W., and Dunn, P.O. (2013). Greater prairie chickens have
13, 551–565. https://doi.org/10.1038/nri3479 a compact MHC-B with a single class IA locus. Immunogenetics 65,
Bumstead, N. (1998). Genomic mapping of resistance to Marek’s disease. 133–144. https://doi.org/10.1007/s00251-012-0664-7
Avian Pathol. 27, s78–s81. Ekblom, R., Stapley, J., Ball, A.D., Birkhead, T., Burke, T., and Slate, J. (2011).
Butter, C., Staines, K., van Hateren, A., Davison, T.F., and Kaufman, J. (2013). Genetic mapping of the major histocompatibility complex in the zebra
The peptide motif of the single dominantly expressed class I molecule finch (Taeniopygia guttata). Immunogenetics 63, 523–530. https://doi.
of the chicken MHC can explain the response to a molecular defined org/10.1007/s00251-011-0528-6
vaccine of infectious bursal disease virus (IBDV). Immunogenetics 65, Esmailnejad, A., Nikbakht Brujeni, G., and Badavam, M. (2017). LEI0258
609–618. https://doi.org/10.1007/s00251-013-0705-x microsatellite variability and its association with humoral and cell
Calnek, B.W. (1985). Genetic resistance. In Marek’s Disease, L.N. Payne, ed. mediated immune responses in broiler chickens. Mol. Immunol. 90,
(Martinus Nijhoff Publishing, New York, NY), pp. 293–328. 22–26.
Chakraborty, P., Vervelde, L., Dalziel, R.G., Wasson, P.S., Nair, V., Dutia, B.M., Früh, K., Gruhler, A., Krishna, R.M., and Schoenhals, G.J. (1999). A
and Kaiser, P. (2017). Marek’s disease virus infection of phagocytes: a de comparison of viral immune escape strategies targeting the MHC class
novo in vitro infection model. J. Gen. Virol. 98, 1080–1088. https://doi. I assembly pathway. Immunol. Rev. 168, 157–166.
org/10.1099/jgv.0.000763 Fulton, J.E., Thacker, E.L., Bacon, L.D., and Hunt, H.D. (1995). Functional
Chan, W.F., Parks-Dely, J.A., Magor, B.G., and Magor, K.E. (2016). analysis of avian class I (BFIV) glycoproteins by epitope tagging and
The minor MHC class I gene UDA of ducks is regulated by let-7 mutagenesis in vitro. Eur. J. Immunol. 25, 2069–2076. https://doi.
microRNA. J. Immunol. 197, 1212–1220. https://doi.org/10.4049/ org/10.1002/eji.1830250740
jimmunol.1600332 Galani, I.E., and Andreakos, E. (2015). Neutrophils in viral infections:
Chang, L., He, S., Mao, D., Liu, Y., Xiong, Z., Fu, D., Li, B., Wei, S., Xu, X., Li, Current concepts and caveats. J. Leukoc. Biol. 98, 557–564. https://doi.
S., et al. (2016). Signatures of crested ibis mhc revealed by recombination org/10.1189/jlb.4VMR1114-555R
screening and short-reads assembly strategy. PLOS ONE 11, e0168744. Galani, I.E., Koltsida, O., and Andreakos, E. (2015). Type III interferons
https://doi.org/10.1371/journal.pone.0168744 (IFNs): Emerging Master Regulators of Immunity. Adv. Exp. Med. Biol.
Chappell, P., Meziane, e.l.K., Harrison, M., Magiera, Ł., Hermann, C., 850, 1–15. https://doi.org/10.1007/978-3-319-15774-0_1
Mears, L., Wrobel, A.G., Durant, C., Nielsen, L.L., Buus, S., et al. (2015). Galani, I.E., Triantafyllia, V., Eleminiadou, E.E., Koltsida, O., Stavropoulos,
Expression levels of MHC class I molecules are inversely correlated A., Manioudaki, M., Thanos, D., Doyle, S.E., Kotenko, S.V., Thanopoulou,
with promiscuity of peptide binding. Elife 4, e05345. https://doi. K., et al. (2017). Interferon-λ mediates non-redundant front-line antiviral
org/10.7554/eLife.05345 protection against influenza virus infection without compromising host
Chen, L.C., Lan, H., Sun, L., Deng, Y.L., Tang, K.Y., and Wan, Q.H. (2015). fitness. Immunity 46, 875–890.e6.
Genomic organization of the crested ibis MHC provides new insight Garcia-Camacho, L., Schat, K.A., Brooks, R., and Bounous D.I. (2003).
into ancestral avian MHC structure. Sci. Rep. 5, 7963. https://doi. Early cell-mediated immune responses to Marek’s disease virus in two
org/10.1038/srep07963 chicken lines with defined major histocompatibility complex antigens.
Chen, S., Cheng, A., and Wang, M. (2013). Innate sensing of viruses by Vet. Immunol. Immunopathol. 95, 145–153.
pattern recognition receptors in birds. Vet. Res. 44, 82. https://doi. García-Sastre, A. (2011). Induction and evasion of type I interferon
org/10.1186/1297-9716-44-82 responses by influenza viruses. Virus Res. 162, 12–18. https://doi.
Collisson, E., Griggs, L., and Drechsler, Y. (2017). Macrophages from org/10.1016/j.virusres.2011.10.017
disease resistant B2 haplotype chickens activate T lymphocytes more Gazit, R., Gruda, R., Elboim, M., Arnon, T.I., Katz, G., Achdout, H., Hanna,
effectively than macrophages from disease susceptible B19 birds. Dev. J., Qimron, U., Landau, G., Greenbaum, E., et al. (2006). Lethal influenza
Comp. Immunol. 67, 249–256. infection in the absence of the natural killer cell receptor gene Ncr1. Nat.
Cooper, M.A., Fehniger, T.A., Fuchs, A., Colonna, M., and Caligiuri, M.A. Immunol. 7, 517–523.
(2004). NK cell and DC interactions. Trends Immunol. 25, 47–52. Genovese, K.J., He, H., Swaggerty, C.L., and Kogut, M.H. (2013). The
Coppo, M.J., Hartley, C.A., and Devlin, J.M. (2013). Immune responses to avian heterophil. Dev. Comp. Immunol. 41, 334–340. https://doi.
infectious laryngotracheitis virus. Dev. Comp. Immunol. 41, 454–462. org/10.1016/j.dci.2013.03.021
https://doi.org/10.1016/j.dci.2013.03.022 Giotis, E.S., Robey, R.C., Skinner, N.G., Tomlinson, C.D., Goodbourn, S., and
Cornelissen, J.B., Post, J., Peeters, B., Vervelde, L., and Rebel, J.M. (2012). Skinner, M.A. (2016). Chicken interferome: avian interferon-stimulated
Differential innate responses of chickens and ducks to low-pathogenic genes identified by microarray and RNA-seq of primary chick embryo
avian influenza. Avian Pathol. 41, 519–529. https://doi.org/10.1080/0 fibroblasts treated with a chicken type I interferon (IFN-α). Vet. Res. 47,
3079457.2012.732691 75. https://doi.org/10.1186/s13567-016-0363-8
Cornelissen, J.B., Vervelde, L., Post, J., and Rebel, J.M. (2013). Differences
in highly pathogenic avian influenza viral pathogenesis and associated