Page 403 - Avian Virology: Current Research and Future Trends
P. 403

394  |  Vervelde and Kaufman
          Schultz, U., Kaspers, B., and Staeheli, P. (2004). The interferon system of   Tag-El-Din-Hassan, H.T., Sasaki, N., Moritoh, K., Torigoe, D., Maeda, A., and
            non-mammalian vertebrates. Dev. Comp. Immunol.  28, 499–508.   Agui, T. (2012). The chicken 2’-5′ oligoadenylate synthetase A inhibits
            https://doi.org/10.1016/j.dci.2003.09.009              the replication of West Nile virus. Jpn. J. Vet. Res. 60, 95–103.
          Schusser, B., Reuter, A., von der Malsburg, A., Penski, N., Weigend, S.,   Takaoka, A., and Yanai, H. (2006). Interferon signalling network in innate
            Kaspers, B., Staeheli, P., and Härtle, S. (2011). Mx is dispensable for   defence. Cell. Microbiol. 8, 907–922.
            interferon-mediated resistance of chicken cells against influenza A virus.   Tan, L., Liao, Y., Fan, J., Zhang, Y., Mao, X., Sun, Y., Song, C., Qiu, X., Meng,
            J. Virol. 85, 8307–8315. https://doi.org/10.1128/JVI.00535-11  C., and Ding, C. (2016). Prediction and identification of novel IBV S1
          Seo,  S.H.,  Pei,  J.,  Briles,  W.E.,  Dzielawa,  J.,  and  Collisson,  E.W.  (2000).   protein derived CTL epitopes in chicken. Vaccine 34, 380–386. https://
            Adoptive transfer of infectious bronchitis virus primed alphabeta T-cells   doi.org/10.1016/j.vaccine.2015.11.042
            bearing CD8 antigen protects chicks from acute infection. Virology 269,   Taylor,  R.L. (2004).  Major  histocompatibility (B)  complex  control  of
            183–189. https://doi.org/10.1006/viro.2000.0211        responses against Rous sarcomas. Poult. Sci. 83, 638–649. https://doi.
          Sharma, J.M. (1981). Natural killer cell activity in chickens exposed to   org/10.1093/ps/83.4.638
            Marek’s disease virus: inhibition of activity in susceptible chickens and   Thacker, E.L., Fulton, J.E., and Hunt, H.D. (1995). In vitro analysis of a
            enhancement of activity in resistant and vaccinated chickens. Avian Dis.   primary, major histocompatibility complex (MHC)-restricted, cytotoxic
            25, 882–893.                                           T-lymphocyte response to avian leukosis virus (ALV), using target cells
          Sharma, J.M., and Lee, L.F. (1983). Effect of infectious bursal disease on   expressing MHC class I cDNA inserted into a recombinant ALV vector.
            natural killer cell activity and mitogenic response of chicken lymphoid   J. Virol. 69, 6439–6444.
            cells: role of adherent cells in cellular immune suppression. Infect.   Thomas, R., and Yang, X. (2016). NK-DC Crosstalk in Immunity to
            Immun. 42, 747–754.                                    Microbial Infection. J. Immunol. Res.  2016, 6374379.  https://doi.
          Shaw, I., Powell, T.J., Marston, D.A., Baker, K., van Hateren, A., Riegert,   org/10.1155/2016/6374379
            P., Wiles, M.V., Milne, S., Beck, S., and Kaufman, J. (2007). Different   Tregaskes, C.A., Harrison, M., Sowa, A.K., van Hateren, A., Hunt, L.G.,
            evolutionary histories of the two classical class I genes BF1 and BF2   Vainio, O., and Kaufman, J. (2016). Surface expression, peptide
            illustrate drift and selection within the stable MHC haplotypes of   repertoire,  and  thermostability  of  chicken  class  I  molecules  correlate
            chickens. J. Immunol. 178, 5744–5752.                  with peptide transporter specificity. Proc. Natl. Acad. Sci. U.S.A. 113,
          Sheppard, P., Kindsvogel, W., Xu, W., Henderson, K., Schlutsmeyer, S.,   692–697. https://doi.org/10.1073/pnas.1511859113
            Whitmore, T.E., Kuestner, R., Garrigues, U., Birks, C., Roraback, J., et al.   Tsuji, H., Taniguchi, Y., Ishizuka, S., Matsuda, H., Yamada, T., Naito, K.,
            (2003). IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat.   and Iwaisaki, H. (2017). Structure and polymorphisms of the major
            Immunol. 4, 63–68. https://doi.org/10.1038/ni873       histocompatibility complex in the Oriental stork, Ciconia boyciana. Sci.
          Sherman, M.A., Goto, R.M., Moore, R.E., Hunt, H.D., Lee, T.D., and Miller,   Rep. 7, 42864. https://doi.org/10.1038/srep42864
            M.M. (2008). Mass spectral data for 64 eluted peptides and structural   Tumpey, T.M., García-Sastre, A., Taubenberger, J.K., Palese, P., Swayne, D.E.,
            modeling define peptide binding preferences for class I alleles in two   Pantin-Jackwood, M.J., Schultz-Cherry, S., Solórzano, A., Van Rooijen,
            chicken MHC-B haplotypes associated with opposite responses to   N., Katz, J.M., et al. (2005). Pathogenicity of influenza viruses with genes
            Marek’s disease. Immunogenetics 60, 527–541.           from the 1918 pandemic virus: functional roles of alveolar macrophages
          Shiina, T., Shimizu, S., Hosomichi, K., Kohara, S., Watanabe, S., Hanzawa,   and  neutrophils  in  limiting  virus  replication  and  mortality  in  mice.  J.
            K., Beck, S., Kulski, J.K., and Inoko, H. (2004). Comparative genomic   Virol. 79, 14933–14944.
            analysis of two avian (quail and chicken) MHC regions. J. Immunol. 172,   Uchikawa, E., Lethier, M., Malet, H., Brunel, J., Gerlier, D., and Cusack,
            6751–6763.                                             S. (2016). Structural analysis of dsRNA binding to anti-viral pattern
          Shiina, T., Hosomichi, K., and Hanzawa, K. (2006). Comparative genomics   recognition receptors LGP2 and MDA5. Mol. Cell 62, 586–602. https://
            of the poultry major histocompatibility complex. Anim. Sci. J.  77,   doi.org/10.1016/j.molcel.2016.04.021
            151–162.                                            Vainio, O., Veromaa, T., Eerola, E., Toivanen, P., and Ratcliffe, M.J. (1988).
          Silverman, R.H. (2007). Viral encounters with 20,50-oligoadenylate   Antigen-presenting cell-T-cell interaction in the chicken is MHC class II
            synthetase and RNase L during the interferon antiviral response. J. Virol.   antigen restricted. J. Immunol. 140, 2864–2868.
            81, 12720–12729.                                    Vallejo, R.L., Pharr, G.T., Liu, H.C., Cheng, H.H., Witter, R.L., and Bacon,
          Smith,  J., Smith,  N.,  Yu, L.,  Paton,  I.R., Gutowska, M.W.,  Forrest,  H.L.,   L.D. (1997). Non-association between Rfp-Y major histocompatibility
            Danner, A.F., Seiler, J.P., Digard, P., Webster, R.G.,  et  al. (2015). A   complex-like genes and susceptibility to Marek’s disease virus-induced
            comparative analysis of host responses to avian influenza infection   tumours in 63 × 72 F2 intercross chickens. Anim. Genet. 28, 331–337.
            in ducks and chickens highlights a role for the interferon-induced   Vance, R.E., Isberg, R.R., and Portnoy, D.A. (2009). Patterns of pathogenesis:
            transmembrane proteins in viral resistance. BMC Genomics  16, 574.   discrimination of pathogenic and nonpathogenic microbes by the innate
            https://doi.org/10.1186/s12864-015-1778-8              immune system. Cell Host Microbe 6, 10–21. https://doi.org/10.1016/j.
          Smith, S.E., Gibson, M.S., Wash, R.S., Ferrara, F., Wright, E., Temperton,   chom.2009.06.007
            N., Kellam, P., and Fife, M. (2013). Chicken interferon-inducible   van Hateren, A., Carter, R., Bailey, A., Kontouli, N., Williams, A.P., Kaufman,
            transmembrane protein 3 restricts influenza viruses and lyssaviruses in   J., and Elliott, T. (2013). A mechanistic basis for the co-evolution of
            vitro. J. Virol. 87, 12957–12966. https://doi.org/10.1128/JVI.01443-13  chicken tapasin and major histocompatibility complex class I (MHC I)
          Staley, M., and Bonneaud, C. (2015). Immune responses of wild birds to   proteins. J. Biol. Chem. 288, 32797–32808. https://doi.org/10.1074/
            emerging infectious diseases. Parasite Immunol. 37, 242–254. https://  jbc.M113.474031
            doi.org/10.1111/pim.12191                           Vareille, M., Kieninger, E., Edwards, M.R., and Regamey, N. (2011). The
          Stewart, C.R., Bagnaud-Baule, A., Karpala, A.J., Lowther, S., Mohr, P.G.,   airway epithelium: soldier in the fight against respiratory viruses. Clin.
            Wise, T.G., Lowenthal, J.W., and Bean, A.G. (2012). Toll-like receptor 7   Microbiol. Rev. 24, 210–229. https://doi.org/10.1128/CMR.00014-10
            ligands inhibit influenza A infection in chickens. J. Interferon Cytokine   Verhelst, J., Hulpiau, P., and Saelens, X. (2013). Mx proteins: antiviral
            Res. 32, 46–51. https://doi.org/10.1089/jir.2011.0036  gatekeepers that restrain the uninvited. Microbiol. Mol. Biol. Rev. 77,
          Stow, J.L., and Condon, N.D. (2016). The cell surface environment for   551–566. https://doi.org/10.1128/MMBR.00024-13
            pathogen recognition and entry. Clin. Transl. Immunology  5, e71.   Vervelde, L., Matthijs, M.G., van Haarlem, D.A., de Wit, J.J., and Jansen,
            https://doi.org/10.1038/cti.2016.15                    C.A. (2013a). Rapid NK-cell activation in chicken after infection with
          Straub, C., Viertlboeck, B.C., and Göbel, T.W. (2013a). The chicken SLAM   infectious bronchitis virus M41. Vet. Immunol. Immunopathol.  151,
            family. Immunogenetics  65, 63–73.  https://doi.org/10.1007/s00251-  337–341. https://doi.org/10.1016/j.vetimm.2012.11.012
            012-0657-6                                          Vervelde, L., Reemers, S.S., van Haarlem, D.A., Post, J., Claassen, E., Rebel,
          Straub,  C.,  Neulen,  M.L.,  Sperling,  B.,  Windau,  K.,  Zechmann,  M.,   J.M., and Jansen, C.A. (2013b). Chicken dendritic cells are susceptible
            Jansen, C.A., Viertlboeck, B.C., and Göbel, T.W. (2013b). Chicken   to highly pathogenic avian influenza viruses which induce strong
            NK cell receptors. Dev. Comp. Immunol.  41, 324–333.  https://doi.  cytokine responses. Dev. Comp. Immunol.  39, 198–206.  https://doi.
            org/10.1016/j.dci.2013.03.013                          org/10.1016/j.dci.2012.10.011
   398   399   400   401   402   403   404   405   406   407   408