Page 403 - Avian Virology: Current Research and Future Trends
P. 403
394 | Vervelde and Kaufman
Schultz, U., Kaspers, B., and Staeheli, P. (2004). The interferon system of Tag-El-Din-Hassan, H.T., Sasaki, N., Moritoh, K., Torigoe, D., Maeda, A., and
non-mammalian vertebrates. Dev. Comp. Immunol. 28, 499–508. Agui, T. (2012). The chicken 2’-5′ oligoadenylate synthetase A inhibits
https://doi.org/10.1016/j.dci.2003.09.009 the replication of West Nile virus. Jpn. J. Vet. Res. 60, 95–103.
Schusser, B., Reuter, A., von der Malsburg, A., Penski, N., Weigend, S., Takaoka, A., and Yanai, H. (2006). Interferon signalling network in innate
Kaspers, B., Staeheli, P., and Härtle, S. (2011). Mx is dispensable for defence. Cell. Microbiol. 8, 907–922.
interferon-mediated resistance of chicken cells against influenza A virus. Tan, L., Liao, Y., Fan, J., Zhang, Y., Mao, X., Sun, Y., Song, C., Qiu, X., Meng,
J. Virol. 85, 8307–8315. https://doi.org/10.1128/JVI.00535-11 C., and Ding, C. (2016). Prediction and identification of novel IBV S1
Seo, S.H., Pei, J., Briles, W.E., Dzielawa, J., and Collisson, E.W. (2000). protein derived CTL epitopes in chicken. Vaccine 34, 380–386. https://
Adoptive transfer of infectious bronchitis virus primed alphabeta T-cells doi.org/10.1016/j.vaccine.2015.11.042
bearing CD8 antigen protects chicks from acute infection. Virology 269, Taylor, R.L. (2004). Major histocompatibility (B) complex control of
183–189. https://doi.org/10.1006/viro.2000.0211 responses against Rous sarcomas. Poult. Sci. 83, 638–649. https://doi.
Sharma, J.M. (1981). Natural killer cell activity in chickens exposed to org/10.1093/ps/83.4.638
Marek’s disease virus: inhibition of activity in susceptible chickens and Thacker, E.L., Fulton, J.E., and Hunt, H.D. (1995). In vitro analysis of a
enhancement of activity in resistant and vaccinated chickens. Avian Dis. primary, major histocompatibility complex (MHC)-restricted, cytotoxic
25, 882–893. T-lymphocyte response to avian leukosis virus (ALV), using target cells
Sharma, J.M., and Lee, L.F. (1983). Effect of infectious bursal disease on expressing MHC class I cDNA inserted into a recombinant ALV vector.
natural killer cell activity and mitogenic response of chicken lymphoid J. Virol. 69, 6439–6444.
cells: role of adherent cells in cellular immune suppression. Infect. Thomas, R., and Yang, X. (2016). NK-DC Crosstalk in Immunity to
Immun. 42, 747–754. Microbial Infection. J. Immunol. Res. 2016, 6374379. https://doi.
Shaw, I., Powell, T.J., Marston, D.A., Baker, K., van Hateren, A., Riegert, org/10.1155/2016/6374379
P., Wiles, M.V., Milne, S., Beck, S., and Kaufman, J. (2007). Different Tregaskes, C.A., Harrison, M., Sowa, A.K., van Hateren, A., Hunt, L.G.,
evolutionary histories of the two classical class I genes BF1 and BF2 Vainio, O., and Kaufman, J. (2016). Surface expression, peptide
illustrate drift and selection within the stable MHC haplotypes of repertoire, and thermostability of chicken class I molecules correlate
chickens. J. Immunol. 178, 5744–5752. with peptide transporter specificity. Proc. Natl. Acad. Sci. U.S.A. 113,
Sheppard, P., Kindsvogel, W., Xu, W., Henderson, K., Schlutsmeyer, S., 692–697. https://doi.org/10.1073/pnas.1511859113
Whitmore, T.E., Kuestner, R., Garrigues, U., Birks, C., Roraback, J., et al. Tsuji, H., Taniguchi, Y., Ishizuka, S., Matsuda, H., Yamada, T., Naito, K.,
(2003). IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat. and Iwaisaki, H. (2017). Structure and polymorphisms of the major
Immunol. 4, 63–68. https://doi.org/10.1038/ni873 histocompatibility complex in the Oriental stork, Ciconia boyciana. Sci.
Sherman, M.A., Goto, R.M., Moore, R.E., Hunt, H.D., Lee, T.D., and Miller, Rep. 7, 42864. https://doi.org/10.1038/srep42864
M.M. (2008). Mass spectral data for 64 eluted peptides and structural Tumpey, T.M., García-Sastre, A., Taubenberger, J.K., Palese, P., Swayne, D.E.,
modeling define peptide binding preferences for class I alleles in two Pantin-Jackwood, M.J., Schultz-Cherry, S., Solórzano, A., Van Rooijen,
chicken MHC-B haplotypes associated with opposite responses to N., Katz, J.M., et al. (2005). Pathogenicity of influenza viruses with genes
Marek’s disease. Immunogenetics 60, 527–541. from the 1918 pandemic virus: functional roles of alveolar macrophages
Shiina, T., Shimizu, S., Hosomichi, K., Kohara, S., Watanabe, S., Hanzawa, and neutrophils in limiting virus replication and mortality in mice. J.
K., Beck, S., Kulski, J.K., and Inoko, H. (2004). Comparative genomic Virol. 79, 14933–14944.
analysis of two avian (quail and chicken) MHC regions. J. Immunol. 172, Uchikawa, E., Lethier, M., Malet, H., Brunel, J., Gerlier, D., and Cusack,
6751–6763. S. (2016). Structural analysis of dsRNA binding to anti-viral pattern
Shiina, T., Hosomichi, K., and Hanzawa, K. (2006). Comparative genomics recognition receptors LGP2 and MDA5. Mol. Cell 62, 586–602. https://
of the poultry major histocompatibility complex. Anim. Sci. J. 77, doi.org/10.1016/j.molcel.2016.04.021
151–162. Vainio, O., Veromaa, T., Eerola, E., Toivanen, P., and Ratcliffe, M.J. (1988).
Silverman, R.H. (2007). Viral encounters with 20,50-oligoadenylate Antigen-presenting cell-T-cell interaction in the chicken is MHC class II
synthetase and RNase L during the interferon antiviral response. J. Virol. antigen restricted. J. Immunol. 140, 2864–2868.
81, 12720–12729. Vallejo, R.L., Pharr, G.T., Liu, H.C., Cheng, H.H., Witter, R.L., and Bacon,
Smith, J., Smith, N., Yu, L., Paton, I.R., Gutowska, M.W., Forrest, H.L., L.D. (1997). Non-association between Rfp-Y major histocompatibility
Danner, A.F., Seiler, J.P., Digard, P., Webster, R.G., et al. (2015). A complex-like genes and susceptibility to Marek’s disease virus-induced
comparative analysis of host responses to avian influenza infection tumours in 63 × 72 F2 intercross chickens. Anim. Genet. 28, 331–337.
in ducks and chickens highlights a role for the interferon-induced Vance, R.E., Isberg, R.R., and Portnoy, D.A. (2009). Patterns of pathogenesis:
transmembrane proteins in viral resistance. BMC Genomics 16, 574. discrimination of pathogenic and nonpathogenic microbes by the innate
https://doi.org/10.1186/s12864-015-1778-8 immune system. Cell Host Microbe 6, 10–21. https://doi.org/10.1016/j.
Smith, S.E., Gibson, M.S., Wash, R.S., Ferrara, F., Wright, E., Temperton, chom.2009.06.007
N., Kellam, P., and Fife, M. (2013). Chicken interferon-inducible van Hateren, A., Carter, R., Bailey, A., Kontouli, N., Williams, A.P., Kaufman,
transmembrane protein 3 restricts influenza viruses and lyssaviruses in J., and Elliott, T. (2013). A mechanistic basis for the co-evolution of
vitro. J. Virol. 87, 12957–12966. https://doi.org/10.1128/JVI.01443-13 chicken tapasin and major histocompatibility complex class I (MHC I)
Staley, M., and Bonneaud, C. (2015). Immune responses of wild birds to proteins. J. Biol. Chem. 288, 32797–32808. https://doi.org/10.1074/
emerging infectious diseases. Parasite Immunol. 37, 242–254. https:// jbc.M113.474031
doi.org/10.1111/pim.12191 Vareille, M., Kieninger, E., Edwards, M.R., and Regamey, N. (2011). The
Stewart, C.R., Bagnaud-Baule, A., Karpala, A.J., Lowther, S., Mohr, P.G., airway epithelium: soldier in the fight against respiratory viruses. Clin.
Wise, T.G., Lowenthal, J.W., and Bean, A.G. (2012). Toll-like receptor 7 Microbiol. Rev. 24, 210–229. https://doi.org/10.1128/CMR.00014-10
ligands inhibit influenza A infection in chickens. J. Interferon Cytokine Verhelst, J., Hulpiau, P., and Saelens, X. (2013). Mx proteins: antiviral
Res. 32, 46–51. https://doi.org/10.1089/jir.2011.0036 gatekeepers that restrain the uninvited. Microbiol. Mol. Biol. Rev. 77,
Stow, J.L., and Condon, N.D. (2016). The cell surface environment for 551–566. https://doi.org/10.1128/MMBR.00024-13
pathogen recognition and entry. Clin. Transl. Immunology 5, e71. Vervelde, L., Matthijs, M.G., van Haarlem, D.A., de Wit, J.J., and Jansen,
https://doi.org/10.1038/cti.2016.15 C.A. (2013a). Rapid NK-cell activation in chicken after infection with
Straub, C., Viertlboeck, B.C., and Göbel, T.W. (2013a). The chicken SLAM infectious bronchitis virus M41. Vet. Immunol. Immunopathol. 151,
family. Immunogenetics 65, 63–73. https://doi.org/10.1007/s00251- 337–341. https://doi.org/10.1016/j.vetimm.2012.11.012
012-0657-6 Vervelde, L., Reemers, S.S., van Haarlem, D.A., Post, J., Claassen, E., Rebel,
Straub, C., Neulen, M.L., Sperling, B., Windau, K., Zechmann, M., J.M., and Jansen, C.A. (2013b). Chicken dendritic cells are susceptible
Jansen, C.A., Viertlboeck, B.C., and Göbel, T.W. (2013b). Chicken to highly pathogenic avian influenza viruses which induce strong
NK cell receptors. Dev. Comp. Immunol. 41, 324–333. https://doi. cytokine responses. Dev. Comp. Immunol. 39, 198–206. https://doi.
org/10.1016/j.dci.2013.03.013 org/10.1016/j.dci.2012.10.011