Page 404 - Avian Virology: Current Research and Future Trends
P. 404
Avian Immune Responses to Virus Infection | 395
Verweij, M.C., Horst, D., Griffin, B.D., Luteijn, R.D., Davison, A.J., Ressing, membrane glycoprotein that is expressed at the cell surface. J. Gen. Virol.
M.E., and Wiertz, E.J. (2015). Viral inhibition of the transporter 80, 2137–2148. https://doi.org/10.1099/0022-1317-80-8-2137.
associated with antigen processing (TAP): a striking example of World Bank (2011). World livestock disease atlas: a quantitative analysis
functional convergent evolution. PLOS Pathog. 11, e1004743. https:// of global animal health data (2006–2009). In The International Bank
doi.org/10.1371/journal.ppat.1004743 for Reconstruction and Development, The World Bank and The TAFS
Viertlboeck, B.C., and Göbel, T.W. (2011). The chicken leukocyte Forum, eds (World Bank, Washington, DC).
receptor cluster. Vet. Immunol. Immunopathol. 144, 1–10. https://doi. Xiao, J., Xiang, W., Zhang, Y., Peng, W., Zhao, M., Niu, L., Chai, Y., Qi, J.,
org/10.1016/j.vetimm.2011.07.001 Wang, F., Qi, P., et al. (2018). An invariant arginine in common with
Viertlboeck, B.C., Gick, C.M., Schmitt, R., Du Pasquier, L., and Göbel, T.W. MHC class II allows extension at the C-terminal end of peptides bound
(2010). Complexity of expressed CHIR genes. Dev. Comp. Immunol. to chicken MHC class I. J. Immunol. 201, 3084–3095. https://doi.
34, 866–873. https://doi.org/10.1016/j.dci.2010.03.007 org/10.4049/jimmunol.1800611.
Waggoner, S.N., Reighard, S.D., Gyurova, I.E., Cranert, S.A., Mahl, S.E., Xu, L., Yu, D., Fan, Y., Peng, L., Wu, Y., and Yao, Y.G. (2016). Loss of RIG-I
Karmele, E.P., McNally, J.P., Moran, M.T., Brooks, T.R., Yaqoob, F., et al. leads to a functional replacement with MDA5 in the Chinese tree
(2016). Roles of natural killer cells in antiviral immunity. Curr. Opin. shrew. Proc. Natl. Acad. Sci. U.S.A. 113, 10950–10955. https://doi.
Virol. 16, 15–23. org/10.1073/pnas.1604939113.
Wakenell, P.S., Miller, M.M., Goto, R.M., Gauderman, W.J., and Briles, W.E. Xu, Q., Chen, Y., Zhao, W., Zhang, T., Liu, C., Qi, T., Han, Z., Shao, Y.,
(1996). Association between the Rfp-Y haplotype and the incidence of Ma, D., and Liu, S. (2016). Infection of goose with genotype VIId
Marek’s disease in chickens. Immunogenetics 44, 242–245. Newcastle Disease virus of goose origin elicits strong immune responses
Walker, B.A., Hunt, L.G., Sowa, A.K., Skjødt, K., Göbel, T.W., Lehner, P.J., at early stage. Front. Microbiol. 7, 1587. https://doi.org/10.3389/
and Kaufman, J. (2011). The dominantly expressed class I molecule of fmicb.2016.01587.
the chicken MHC is explained by coevolution with the polymorphic Xu, X.N., and Screaton, G.R. (2002). MHC/peptide tetramer-based studies
peptide transporter (TAP) genes. Proc. Natl. Acad. Sci. U.S.A. 108, of T-cell function. J. Immunol. Methods 268, 21–28.
8396–8401. https://doi.org/10.1073/pnas.1019496108. Yang, Q., Wei, P., and Chen, H. (2011). Cytokine responses and inducible
Wallny, H.J., Avila, D., Hunt, L.G., Powell, T.J., Riegert, P., Salomonsen, nitrous oxide synthase expression patterns in neonatal chicken brain
J., Skjødt, K., Vainio, O., Vilbois, F., Wiles, M.V., et al. (2006). Peptide microglia infected with very virulent Marek’s disease virus strain
motifs of the single dominantly expressed class I molecule explain the YL040920. Vet. Immunol. Immunopathol. 142, 14–24. https://doi.
striking MHC-determined response to Rous sarcoma virus in chickens. org/10.1016/j.vetimm.2011.03.021.
Proc. Natl. Acad. Sci. U.S.A. 103, 1434–1439. Yamamoto, A., Iwata, A., Koh, Y., Kawai, S., Murayama, S., Hamada, K.,
Walzer, T., Dalod, M., Robbins, S.H., Zitvogel, L., and Vivier, E. (2005). Maekawa, S., Ueda, S., and Sokawa, Y. (1998). Two types of chicken
Natural-killer cells and dendritic cells: ‘l’union fait la force’. Blood 106, 2’,5′-oligoadenylate synthetase mRNA derived from alleles at a single
2252–2258. locus. Biochim. Biophys. Acta 1395, 181–191.
Wang, B., Ekblom, R., Strand, T.M., Portela-Bens, S., and Höglund, J. (2012). Yao, Q., Fischer, K.P., Arnesen, K., Tyrrell, D.L., and Gutfreund, K.S.
Sequencing of the core MHC region of black grouse (Tetrao tetrix) and (2014). Molecular cloning, expression and characterization of Pekin
comparative genomics of the galliform MHC. BMC Genomics 13, 553. duck interferon-λ. Gene 548, 29–38. https://doi.org/10.1016/j.
https://doi.org/10.1186/1471-2164-13-553. gene.2014.06.066.
Wang, X., Hinson, E.R., and Cresswell, P. (2007). The interferon-inducible Yuk, S.S., Lee, D.H., Park, J.K., Tseren-Ochir, E.O., Kwon, J.H., Noh, J.Y.,
protein viperin inhibits influenza virus release by perturbing lipid rafts. Lee, J.B., Park, S.Y., Choi, I.S., and Song, C.S. (2016). Pre-immune state
Cell Host Microbe 2, 96–105. induced by chicken interferon gamma inhibits the replication of H1N1
Wei, L., Jiao, P., Song, Y., Cao, L., Yuan, R., Gong, L., Cui, J., Zhang, human and H9N2 avian influenza viruses in chicken embryo fibroblasts.
S., Qi, W., Yang, S., et al. (2013). Host immune responses of ducks Virol. J. 13, 71. https://doi.org/10.1186/s12985-016-0527-1.
infected with H5N1 highly pathogenic avian influenza viruses of Zhang, J., Chen, Y., Qi, J., Gao, F., Liu, Y., Liu, J., Zhou, X., Kaufman, J.,
different pathogenicities. Vet. Microbiol. 166, 386–393. https://doi. Xia, C., and Gao, G.F. (2012). Narrow groove and restricted anchors of
org/10.1016/j.vetmic.2013.06.019. MHC class I molecule BF2*0401 plus peptide transporter restriction
Westerdahl, H., Wittzell, H., and von Schantz, T. (2000). Mhc diversity can explain disease susceptibility of B4 chickens. J. Immunol. 189,
in two passerine birds: no evidence for a minimal essential Mhc. 4478–4487. https://doi.org/10.4049/jimmunol.1200885.
Immunogenetics 52, 92–100. Zhang, W., Bouwman, K.M., van Beurden, S.J., Ordonez, S.R., van Eijk,
Wilcock, D., Duncan, S.A., Traktman, P., Zhang, W.H., and Smith, G.L. M., Haagsman, H.P., Verheije, M.H., and Veldhuizen, E.J.A. (2017).
(1999). The vaccinia virus A4OR gene product is a nonstructural, type II Chicken mannose binding lectin has antiviral activity towards infectious
bronchitis virus. Virology 509, 252–259.