Page 404 - Avian Virology: Current Research and Future Trends
P. 404

Avian Immune Responses to Virus Infection |   395
          Verweij, M.C., Horst, D., Griffin, B.D., Luteijn, R.D., Davison, A.J., Ressing,   membrane glycoprotein that is expressed at the cell surface. J. Gen. Virol.
            M.E., and Wiertz, E.J. (2015). Viral inhibition of the transporter   80, 2137–2148. https://doi.org/10.1099/0022-1317-80-8-2137.
            associated with antigen processing (TAP): a striking example of   World Bank (2011). World livestock disease atlas: a quantitative analysis
            functional convergent evolution. PLOS Pathog. 11, e1004743. https://  of global animal health data (2006–2009). In The International Bank
            doi.org/10.1371/journal.ppat.1004743                  for Reconstruction and Development, The World Bank and The TAFS
          Viertlboeck, B.C., and Göbel, T.W. (2011). The chicken leukocyte   Forum, eds (World Bank, Washington, DC).
            receptor cluster. Vet. Immunol. Immunopathol. 144, 1–10. https://doi.  Xiao, J., Xiang, W., Zhang, Y., Peng, W., Zhao, M., Niu, L., Chai, Y., Qi, J.,
            org/10.1016/j.vetimm.2011.07.001                      Wang, F., Qi, P., et al. (2018). An invariant arginine in common with
          Viertlboeck, B.C., Gick, C.M., Schmitt, R., Du Pasquier, L., and Göbel, T.W.   MHC class II allows extension at the C-terminal end of peptides bound
            (2010). Complexity of expressed CHIR genes. Dev. Comp. Immunol.   to chicken MHC class I. J. Immunol.  201, 3084–3095.  https://doi.
            34, 866–873. https://doi.org/10.1016/j.dci.2010.03.007  org/10.4049/jimmunol.1800611.
          Waggoner,  S.N., Reighard,  S.D., Gyurova, I.E.,  Cranert, S.A., Mahl,  S.E.,   Xu, L., Yu, D., Fan, Y., Peng, L., Wu, Y., and Yao, Y.G. (2016). Loss of RIG-I
            Karmele, E.P., McNally, J.P., Moran, M.T., Brooks, T.R., Yaqoob, F., et al.   leads to a functional replacement with MDA5 in the Chinese tree
            (2016). Roles of natural killer cells in antiviral immunity. Curr. Opin.   shrew. Proc. Natl. Acad. Sci. U.S.A.  113, 10950–10955.  https://doi.
            Virol. 16, 15–23.                                     org/10.1073/pnas.1604939113.
          Wakenell, P.S., Miller, M.M., Goto, R.M., Gauderman, W.J., and Briles, W.E.   Xu, Q., Chen, Y., Zhao, W., Zhang, T., Liu, C., Qi, T., Han, Z., Shao, Y.,
            (1996). Association between the Rfp-Y haplotype and the incidence of   Ma, D., and Liu, S. (2016). Infection of goose with genotype VIId
            Marek’s disease in chickens. Immunogenetics 44, 242–245.  Newcastle Disease virus of goose origin elicits strong immune responses
          Walker, B.A., Hunt, L.G., Sowa, A.K., Skjødt, K., Göbel, T.W., Lehner, P.J.,   at early stage. Front. Microbiol.  7, 1587.  https://doi.org/10.3389/
            and Kaufman, J. (2011). The dominantly expressed class I molecule of   fmicb.2016.01587.
            the chicken MHC is explained by coevolution with the polymorphic   Xu, X.N., and Screaton, G.R. (2002). MHC/peptide tetramer-based studies
            peptide  transporter (TAP) genes.  Proc.  Natl.  Acad.  Sci.  U.S.A.  108,   of T-cell function. J. Immunol. Methods 268, 21–28.
            8396–8401. https://doi.org/10.1073/pnas.1019496108.  Yang, Q., Wei, P., and Chen, H. (2011). Cytokine responses and inducible
          Wallny, H.J., Avila, D., Hunt, L.G., Powell, T.J., Riegert, P., Salomonsen,   nitrous oxide synthase expression patterns in neonatal chicken brain
            J., Skjødt, K., Vainio, O., Vilbois, F., Wiles, M.V., et al. (2006). Peptide   microglia infected with very virulent Marek’s disease virus strain
            motifs of the single dominantly expressed class I molecule explain the   YL040920.  Vet.  Immunol.  Immunopathol.  142,  14–24.  https://doi.
            striking MHC-determined response to Rous sarcoma virus in chickens.   org/10.1016/j.vetimm.2011.03.021.
            Proc. Natl. Acad. Sci. U.S.A. 103, 1434–1439.       Yamamoto, A., Iwata, A., Koh, Y., Kawai, S., Murayama, S., Hamada, K.,
          Walzer, T., Dalod, M., Robbins, S.H., Zitvogel, L., and Vivier, E. (2005).   Maekawa, S., Ueda, S., and Sokawa, Y. (1998). Two types of chicken
            Natural-killer cells and dendritic cells: ‘l’union fait la force’. Blood 106,   2’,5′-oligoadenylate synthetase mRNA derived from alleles at a single
            2252–2258.                                            locus. Biochim. Biophys. Acta 1395, 181–191.
          Wang, B., Ekblom, R., Strand, T.M., Portela-Bens, S., and Höglund, J. (2012).   Yao, Q., Fischer, K.P., Arnesen, K., Tyrrell, D.L., and Gutfreund, K.S.
            Sequencing of the core MHC region of black grouse (Tetrao tetrix) and   (2014). Molecular cloning, expression and characterization of Pekin
            comparative genomics of the galliform MHC. BMC Genomics 13, 553.   duck interferon-λ. Gene  548, 29–38.  https://doi.org/10.1016/j.
            https://doi.org/10.1186/1471-2164-13-553.             gene.2014.06.066.
          Wang, X., Hinson, E.R., and Cresswell, P. (2007). The interferon-inducible   Yuk, S.S., Lee, D.H., Park, J.K., Tseren-Ochir, E.O., Kwon, J.H., Noh, J.Y.,
            protein viperin inhibits influenza virus release by perturbing lipid rafts.   Lee, J.B., Park, S.Y., Choi, I.S., and Song, C.S. (2016). Pre-immune state
            Cell Host Microbe 2, 96–105.                          induced by chicken interferon gamma inhibits the replication of H1N1
          Wei,  L.,  Jiao,  P.,  Song,  Y.,  Cao,  L.,  Yuan,  R.,  Gong,  L.,  Cui,  J.,  Zhang,   human and H9N2 avian influenza viruses in chicken embryo fibroblasts.
            S., Qi, W., Yang, S.,  et al. (2013). Host immune responses of ducks   Virol. J. 13, 71. https://doi.org/10.1186/s12985-016-0527-1.
            infected with H5N1 highly pathogenic avian influenza viruses of   Zhang, J., Chen, Y., Qi, J., Gao, F., Liu, Y., Liu, J., Zhou, X., Kaufman, J.,
            different  pathogenicities.  Vet.  Microbiol.  166,  386–393.  https://doi.  Xia, C., and Gao, G.F. (2012). Narrow groove and restricted anchors of
            org/10.1016/j.vetmic.2013.06.019.                     MHC class I molecule BF2*0401 plus  peptide transporter restriction
          Westerdahl, H., Wittzell, H., and von Schantz, T. (2000). Mhc diversity   can explain disease susceptibility of B4 chickens. J. Immunol.  189,
            in two passerine birds: no evidence for a minimal essential Mhc.   4478–4487. https://doi.org/10.4049/jimmunol.1200885.
            Immunogenetics 52, 92–100.                          Zhang, W., Bouwman, K.M., van Beurden, S.J., Ordonez, S.R., van Eijk,
          Wilcock, D., Duncan, S.A., Traktman, P., Zhang, W.H., and Smith, G.L.   M., Haagsman, H.P., Verheije, M.H., and Veldhuizen, E.J.A. (2017).
            (1999). The vaccinia virus A4OR gene product is a nonstructural, type II   Chicken mannose binding lectin has antiviral activity towards infectious
                                                                  bronchitis virus. Virology 509, 252–259.
   399   400   401   402   403   404   405   406   407   408   409