Page 402 - Avian Virology: Current Research and Future Trends
P. 402

Avian Immune Responses to Virus Infection |   393
          O’Brien, T.R., Prokunina-Olsson, L., and Donnelly, R.P. (2014). IFN-λ4: the   Read, A.F., Baigent, S.J., Powers, C., Kgosana, L.B., Blackwell, L., Smith,
            paradoxical new member of the interferon lambda family. J. Interferon   L.P., Kennedy, D.A., Walkden-Brown, S.W., and Nair, V.K. (2015).
            Cytokine Res. 34, 829–838. https://doi.org/10.1089/jir.2013.0136  Imperfect Vaccination Can Enhance the Transmission of Highly Virulent
          O’Connor, E.A., Strandh, M., Hasselquist, D., Nilsson, J.Å., and Westerdahl,   Pathogens. PLOS Biol. 13, e1002198. https://doi.org/10.1371/journal.
            H. (2016). The evolution of highly variable immunity genes across   pbio.1002198
            a passerine bird radiation. Mol. Ecol.  25, 977–989.  https://doi.  Reddy, V.R., Trus, I., Desmarets, L.M., Li, Y., Theuns, S., and Nauwynck,
            org/10.1111/mec.13530                                 H.J. (2016). Productive replication of nephropathogenic infectious
          Okuzaki, Y., Kidani, S., Kaneoka, H., Iijima, S., and Nishijima, K.I. (2017).   bronchitis virus in peripheral blood monocytic cells, a strategy for viral
            Characterization of chicken interferon-inducible transmembrane   dissemination and kidney infection in chickens. Vet. Res. 47, 70. https://
            protein-10. Biosci. Biotechnol. Biochem. 81, 914–921. https://doi.org  doi.org/10.1186/s13567-016-0354-9
            /10.1080/09168451.2016.1274639                      Reed,  K.D.,  Meece,  J.K.,  Henkel,  J.S.,  and  Shukla,  S.K.  (2003).  Birds,
          Omar, A.R., and Schat, K.A. (1997). Characterization of Marek’s disease   migration and emerging zoonoses: west nile virus, lyme disease, influenza
            herpesvirus-specific cytotoxic T lymphocytes in chickens inoculated   A and enteropathogens. Clin. Med. Res. 1, 5–12.
            with a non-oncogenic vaccine strain of MDV. Immunology 90, 579–585.  Reemers, S.S., Veldhuizen, E.J., Fleming, C., van Haarlem, D.A.,
          Owen, J.A., Punt, J., Stranford, S.A., and Jones, P.P. (2018). Kuby   Haagsman, H., and Vervelde, L. (2010). Transcriptional expression
            Immunology, 8th edn. (W.H. Freeman, Macmillan Learning, New York,   levels of chicken collectins are affected by avian influenza A virus
            NY).                                                  inoculation. Vet. Microbiol. 141, 379–384. https://doi.org/10.1016/j.
          Parham, P. (2008). The genetic and evolutionary balances in human NK   vetmic.2009.09.026
            cell receptor diversity. Semin. Immunol.  20, 311–316.  https://doi.  Reemers, S.S., van Haarlem, D.A., Sijts, A.J., Vervelde, L., and Jansen, C.A.
            org/10.1016/j.smim.2008.10.002                        (2012). Identification of novel avian influenza virus derived CD8+ T-cell
          Parker, A., and Kaufman, J. (2017). What chickens might tell us about the   epitopes. PLOS ONE  7, e31953.  https://doi.org/10.1371/journal.
            MHC class II system. Curr. Opin. Immunol. 46, 23–29.  pone.0031953
          Pei, J., Sekellick, M.J., Marcus, P.I., Choi, I.S., and Collisson, E.W. (2001).   Reuter, A., Soubies, S., Härtle, S., Schusser, B., Kaspers, B., Staeheli, P., and
            Chicken interferon type I inhibits infectious bronchitis virus replication   Rubbenstroth, D. (2014). Antiviral activity of lambda interferon in
            and associated respiratory illness. J. Interferon Cytokine Res. 21, 1071–  chickens. J. Virol. 88, 2835–2843. https://doi.org/10.1128/JVI.02764-
            1077. https://doi.org/10.1089/107999001317205204      13
          Pello, S.J., and Olsen, G.H. (2013). Emerging and reemerging diseases of   Rogers, S.L., Viertlboeck, B.C., Göbel, T.W., and Kaufman, J. (2008). Avian
            avian wildlife. Vet. Clin. North Am. Exot. Anim. Pract.  16, 357–381.   NK activities, cells and receptors. Semin. Immunol.  20, 353–360.
            https://doi.org/10.1016/j.cvex.2013.02.001            https://doi.org/10.1016/j.smim.2008.09.005
          Pérez-Ramírez,  E., Llorente,  F.,  and Jiménez-Clavero, M.Á.  (2014).   Röll, S., Härtle, S., Lütteke, T., Kaspers, B., and Härtle, S. (2017). Tissue
            Experimental infections of wild birds with West Nile virus. Viruses 6,   and time specific expression pattern of interferon regulated genes in the
            752–781.                                              chicken. BMC  Genomics  18,  264.  https://doi.org/10.1186/s12864-
          Philbin, V.J., Iqbal, M., Boyd, Y., Goodchild, M.J., Beal, R.K., Bumstead, N.,   017-3641-6
            Young, J., and Smith, A.L. (2005). Identification and characterization   Rusinova, I., Forster, S., Yu, S., Kannan, A., Masse, M., Cumming, H.,
            of a functional, alternatively spliced Toll-like receptor 7 (TLR7) and   Chapman, R., and Hertzog, P.J. (2013). INTERFEROME v2. 0: an
            genomic disruption of TLR8 in chickens. Immunology 114, 507–521.  updated database of annotated interferon-regulated genes. Nucleic Acids
          Plachý, J. (1984). Hierarchy of the B (MHC) haplotypes controlling   Res. 41, D1040–D1046.
            resistance to rous sarcomas in a model of inbred lines of chickens. Folia   Santhakumar, D., Iqbal, M., Nair, V., and Munir, M. (2017a). Chicken IFN
            Biol. 30, 412–425.                                    kappa: A  novel cytokine  with antiviral activities. Sci.  Rep.  7, 2719.
          Plachý, J., and Benda, V. (1981). Location of the gene responsible for Rous   https://doi.org/10.1038/s41598-017-02951-2
            sarcoma regression in the B-F region of the B complex (MHC) of the   Santhakumar, D., Rubbenstroth, D., Martinez-Sobrido, L., and Munir, M.
            chicken. Folia Biol. 27, 363–368.                     (2017b). Avian interferons and their antiviral effectors. Front. Immunol.
          Plachý, J., Pink, J.R., and Hála, K. (1992). Biology of the chicken MHC (B   8, 49. https://doi.org/10.3389/fimmu.2017.00049
            complex). Crit. Rev. Immunol. 12, 47–79.            Sarson, A.J., Abdul-Careem, M.F., Read, L.R., Brisbin, J.T., and Sharif, S.
          Qian, J., Xu, X., Ding, J., Yin, R., Sun, Y., Xue, C., Wang, J., Ding, C., Yu, S.,   (2008). Expression of cytotoxicity-associated genes in Marek’s disease
            Liu, X., et al. (2017). Newcastle disease virus-like particles induce DC   virus-infected chickens. Viral Immunol.  21, 267–272.  https://doi.
            maturation through TLR4/NF-κB pathway and facilitate DC migration   org/10.1089/vim.2007.0094
            by CCR7-CCL19/CCL21 axis. Vet. Microbiol. 203, 158–166.  Satoh, T., and Akira, S. (2016). Toll-like receptor signaling and its inducible
          Qu, H., Yang, L., Meng, S., Xu, L., Bi, Y., Jia, X., Li, J., Sun, L., and Liu, W.   proteins. Microbiol. Spectr. 4, https://doi.org/10.1128/microbiolspec.
            (2013). The differential antiviral activities of chicken interferon α   MCHD-0040-2016
            (ChIFN-α) and ChIFN-β are related to distinct interferon-stimulated   Schijns, V.E., van de Zande, S., Lupiani, B., and Reddy, S.M. (2013). Practical
            gene expression. PLOS ONE  8, e59307.  https://doi.org/10.1371/  aspects  of  poultry vaccination.  In  Avian  Immunology,  2nd edn,  K.A.
            journal.pone.0059307                                  Schat, B. Kaspers, P. Kaiser, eds (Elsevier, Ltd, Amsterdam) pp. 149–167.
          Radwanski, E., Perentesis, G., Jacobs, S., Oden, E., Affrime, M., Symchowicz,   Schlee,  M., and Hartmann, G. (2016).  Discriminating self  from non-self
            S., and Zampaglione, N. (1987). Pharmacokinetics of interferon alpha-2b   in nucleic acid sensing. Nat. Rev. Immunol. 16, 566–580. https://doi.
            in healthy volunteers. J. Clin. Pharmacol. 27, 432–435.  org/10.1038/nri.2016.78
          Raftery, N., and Stevenson, N.J. (2017). Advances in anti-viral immune   Schneider, W.M., Chevillotte, M.D., and Rice, C.M. (2014).
            defence: revealing the importance of the IFN JAK/STAT pathway. Cell.   Interferon-stimulated genes: a complex web of host defenses. Annu.
            Mol. Life Sci.  74, 2525–2535.  https://doi.org/10.1007/s00018-017-  Rev. Immunol.  32, 513–545.  https://doi.org/10.1146/annurev-
            2520-2                                                immunol-032713-120231
          Rauf, A., Khatri, M., Murgia, M.V., Jung, K., and Saif, Y.M. (2011a).   Schneidewind, A., Brockman, M.A., Yang, R., Adam, R.I., Li, B., Le Gall,
            Differential modulation of cytokine, chemokine and Toll like receptor   S., Rinaldo, C.R., Craggs, S.L., Allgaier, R.L., Power, K.A., et al. (2007).
            expression in chickens infected with classical and variant infectious   Escape from the dominant HLA-B27-restricted cytotoxic T-lymphocyte
            bursal disease virus. Vet. Res.  42, 85.  https://doi.org/10.1186/1297-  response  in  Gag  is  associated  with  a  dramatic  reduction  in  human
            9716-42-85                                            immunodeficiency virus type 1 replication. J. Virol. 81, 12382–12393.
          Rauf, A., Khatri, M., Murgia, M.V., and Saif, Y.M. (2011b). Expression   Schoggins, J.W., Wilson, S.J., Panis, M., Murphy, M.Y., Jones, C.T., Bieniasz,
            of perforin-granzyme pathway genes in the bursa of infectious bursal   P., and Rice, C.M. (2011). A diverse range of gene products are effectors
            disease virus-infected chickens. Dev. Comp. Immunol.  35, 620–627.   of the type I interferon antiviral response. Nature 472, 481–485. https://
            https://doi.org/10.1016/j.dci.2011.01.007             doi.org/10.1038/nature09907
   397   398   399   400   401   402   403   404   405   406   407