Page 334 - Six Sigma Advanced Tools for Black Belts and Master Black Belts
P. 334

OTE/SPH
 OTE/SPH
                         3:6
                              Char Count= 0
          August 31, 2006
 JWBK119-20
                                       Example 2                             319
      Table 20.9 Partial results for ‘larger-is-better’.
      ω μ   ω σ      ˆ y μ    ˆ y σ   x 1      x 2      x 3       δ μ       δ σ
      1.00  0.00  672.5048  60.0000  1.7245  −0.0976  −0.1283  −279.5903   N/A
      0.99  0.01  674.4746  60.2361  1.7250  −0.0890  −0.1285  −280.3810  23.6067
      0.98  0.02  680.2988  60.9371  1.7261  −0.0648  −0.1280  −277.2991  46.8570
      ...   ...     ...      ...      ...     ...       ...      ...        ...
      0.80  0.20  860.8103  87.8957  1.6384   0.5344   0.1736  −114.0520  139.4786
      ...   ...     ...      ...      ...     ...       ...      ...        ...
      0.50  0.50  931.9012  107.5188  1.5124  0.6717   0.5112  −40.3014   95.0376
      ...   ...     ...      ...      ...     ...       ...      ...        ...
      0.01  0.99  952.0052  123.1573  1.3615  0.7298   0.7835  −4.6699    63.7953




      least as good as CN’s results; in particular, the result (3.8435, 36.4030) is better than that
      of CN since the value of mean 3.8435 is smaller than 4.18 with the value of standard
      deviation (36.4030) is within the region ˆy σ ≤ 75.



                                  20.4 EXAMPLE 2

                                           3
      The experiment in Example 1 involved a 3 design with each setting run three times
                           18
                                                             24
      to give a total of 81 runs. From this design, Vining and Schaub extracted a partially
      replicated factorial, face-centered central composite design. The resulting design con-
      sisted of 22 runs and the dual response surfaces in which a linear variance model is
      fitted are as follows:

                                                   2
        ˆ y μ = 304.8 + 162.9x 1 + 102.3x 2 + 148.4x 3 − 16.7x + 12.7x 2
                                                   1      2
                   2
             + 46.8x + 79.1x 1 x 2 + 77.5x 1 x 3 + 55.2x 2 x 3 ,
                   3
        ˆ y σ = 86.7 + 6.0x 1 − 1.6x 2 + 51.5x 3 .

      Table 20.10 Partial results for ‘smaller-is-better’.

      ω μ    ω σ     y μ     y σ       x 1       x 2      x 3      δ μ      δ σ
      1.00   0.00  4.1807  35.8800  −0.1932   −0.2306   −1.7057   0.3381   N/A
      0.99  0.01   4.1809  35.8798  −0.1941   −0.2311   −1.7055   0.3416  −0.0164
      0.98   0.02  4.1806  35.8801  −0.1939   −0.2311   −1.7056   0.3448  0.0064
      ...    ...    ...      ...       ...      ...       ...      ...      ...
      0.80   0.20  4.1647  35.8979  −0.1921   −0.2334   −1.7055   0.4025  0.0896
      ...    ...    ...      ...       ...      ...       ...      ...      ...
      0.50  0.50   4.0445  36.0404  −0.1822   −0.2568   −1.7032   0.4037  0.3208
      ...    ...    ...      ...       ...      ...       ...      ...      ...
      0.01  0.99   3.8435  36.4030  −0.1459   −0.3396   −1.6922   0.0833  0.5283
   329   330   331   332   333   334   335   336   337   338   339