Page 62 - math 12
P. 62
:ﻲﺗﺄﻳﺎﻤﻣ ﻞﻜﻟ (ﻱﺩﻮﻤﻌﻟﺍ) ِﺏﺮﻀﻟﺍ َﺞﺗﺎﻧ ْﺪﺟ (3) ﻝﺎﺜﻣ
i) (3th - 7) (5+ th )
2
2
(3th -7)
2
× (5+ th ) ﻲﻧﺎﺜﻟﺍ ﺱﻮﻘﻟﺍ ﻲﻓ (3th ) ﺔﻳﺩﻮﻤﻌﻟﺍ ﺔﻘﻳﺮﻄﻟﺎﺑ ﺏﺮﺿﺍ
2
2
15th - 35 ﻲﻧﺎﺜﻟﺍ ﺱﻮﻘﻟﺍ ﻲﻓ (-7) ﺔﻳﺩﻮﻤﻌﻟﺍ ﺔﻘﻳﺮﻄﻟﺎﺑ ﺏﺮﺿﺍ
2
2 4
-7th 2 + 3t h ﺾﻌﺑ ﺖﺤﺗ ﺔﻬﺑﺎﺸﺘﻤﻟﺍ ﺩﻭﺪﺤﻟﺍ ﻊﺿﺍ
2 4
2
8th -35 + 3t h ﺩﻭﺪﺤﻟﺍ ﻊﻤﺟﺍ
2
ii) ( z w +1) (3wz + 4)
3
2
9
2
( z w +1)
3
2
9
2
× (3zw + 4) ﻲﻧﺎﺜﻟﺍ ﺱﻮﻘﻟﺍ ﻲﻓ ( z w ) ﺔﻳﺩﻮﻤﻌﻟﺍ ﺔﻘﻳﺮﻄﻟﺎﺑ ﺏﺮﺿﺍ
2
3
9
2
4
3
z w + 3zw ﻲﻧﺎﺜﻟﺍ ﺱﻮﻘﻟﺍ ﻲﻓ (1) ﺔﻳﺩﻮﻤﻌﻟﺍ ﺔﻘﻳﺮﻄﻟﺎﺑ ﺏﺮﺿﺍ
3
8
2
3
+ z w + 4 ﺾﻌﺑ ﺖﺤﺗ ﺔﻬﺑﺎﺸﺘﻤﻟﺍ ﺩﻭﺪﺤﻟﺍ ﻊﺿﺍ
9
2 z w + z w + 3zw + 4 ﺩﻭﺪﺤﻟﺍ ﻊﻤﺟﺍ
8
3
2
4
3
3 9
(4) ﻝﺎﺜﻣ
( (8y+3) ، (8y-6) ﺭﺎﺘﻣﻷﺎﺑ ﻩﺍﺪﻌﺑ ٍﺓﺮﺋﺎﻁ ِﺓﺮﻛ ُ ﺐﻌﻠﻣ
ﺽﺮﻌﻟﺍ × ﻝﻮﻄﻟﺍ = ﺐﻌﻠﻤﻟﺍ ﺔﺣﺎﺴﻣ ؟ ﺐﻌﻠﻤﻟﺍ ﺔﺣﺎﺴﻣ ﺎﻣ
A= (8y+3) ×(8y-6) ﻊﻳﺯﻮﺘﻟﺍ ﺔﻴﺻﺎﺧ ﻝﺎﻤﻌﺘﺳﺎﺑ
= 64y - 48y + 24y -18 ﻲﻘﻓﻻﺍ ﺏﺮﻀﻟﺍ ﻝﺎﻤﻌﺘﺳﺎﺑ
2
ُ
= ( 64y -24y -18) ﺔﻌﺑﺮﻤﻟﺍ ﺭﺎﺘﻣﻻﺎﺑ ِﺐﻌﻠﻤﻟﺍ ﺔﺣﺎﺴﻣ
2
ﺩﻭﺪﺣ ﺔﺛﻼﺛ ﻦﻣ ﻲﻧﺎﺜﻟﺍﻭ ﻦﻳﺪﺣ ﻦﻣ ﻝﻭﻻﺍ ﻦﻳﺭﺍﺪﻘﻣ ﺏﺮﺿ [3-3-2]
Multiplying an Algebraic Expression by Two Terms and by Three Terms
ﻊﻳﺯﻮﺘﻟﺍ ﺔﻴﺻﺎﺧ ﻝﺎﻤﻌﺘﺳﺎﺑ ﱢﻱﺮﺒﺟ ﺭﺍﺪﻘﻣ ﻲﻓ ﱢﻱﺮﺒﺟ ﺭﺍﺪﻘﻣ ﺏﺮﺿ ﺱﺭﺪﻟﺍ ﺍﺬﻫ ﻦﻣ ﻝﻭﻻﺍ ﺪﻨﺒﻟﺍ ﻲﻓ ﺎﻘﺑﺎﺳ ﺖﻤﻠﻌﺗ
ﻦﻣ ﻥﻮﻜﺘﻳ ﱢﻱﺮﺒﺟ ﺭﺍﺪﻘﻣ ﻊﻣ ﻦﻳﺪﺣ ﻦﻣ ﻥﻮﻜﺘﻳ ﱢﻱﺮﺒﺟ ﺭﺍﺪﻘﻣ ﺏﺮﺿ ﻢﻠﻌﺘﺗ ﻑﻮﺳﻭ ﻲﻘﻓﻻﺍﻭ ﻱﺩﻮﻤﻌﻟﺍ ﺏﺮﻀﻟﺎﺑ
ٍ
ٍ
. ﻱﺩﻮﻤﻌﻟﺍﻭ ﻲﻘﻓﻻﺍ ِﺏﺮﻀﻟﺍ ﻝﺎﻤﻌﺘﺳﺎﺑ ﺩﻭﺪﺣ ﺔﺛﻼﺛ
ِ
: ﻲﺗﺄﻳ ﺎﻤﻣ ﻞﻛ ﻲﻓ ( ﻲﻘﻓﻻﺍ) ِﺏﺮﻀﻟﺍ َﺞﺗﺎﻧ ْﺪﺟ (5) ﻝﺎﺜﻣ
i) (-2x - 8)(x + x - 2)- 8)(x + x - 2)
+ x - 2)
2
3
ﻊﻳﺯﻮﺘﻟﺍ ﺔﻴﺻﺎﺧ ﻝﺎﻤﻌﺘﺳﺎﺑ
= -2x (x +x-2) - 8(x +x-2) ﻲﻘﻓﻻﺍ ﺏﺮﻀﻟﺍ ﻝﺎﻤﻌﺘﺳﺎﺑ
3
3
2
= -2x - 2x + 4x - 8x - 8x +16
3
3
5
2
= -2x - 10x + 4x - 8x +16
3
5
2
61