Page 52 - 10A4
P. 52
4 Công thức biến đổi tích về tổng
1
cos a · cos b = [cos(a + b) + cos(a − b)]
2
1
sin a · sin b = − [cos(a + b) − cos(a − b)]
2
1
sin a · cos b = [sin(a + b) + sin(a − b)]
2
5 Công thức biến đổi tổng về tích
A + B A − B
sin A + sin B = 2 sin cos
2 2
A + B A − B
sin A − sin B = 2 cos sin
2 2
A + B A − B
cos A + cos B = 2 cos cos
2 2
A + B A − B
cos A − cos B = −2 sin sin
2 2
sin(A ± B) π
tan A ± tan B = A; B 6= + kπ, k ∈ Z
cos A · cos B 2
6 Giá trị lượng giác của các cung đặc biệt
0 ◦ 30 ◦ 45 ◦ 60 ◦ 90 ◦ 120 ◦ 135 ◦ 150 ◦ 180 ◦
Góc π π π π 2π 3π 5π
0 π
6 4 √ 3 √ 2 3 √ 4 √ 6
1 2 3 3 2 1
sin 0 1 0
2 √ 2 √ 2 2 2 √ 2 √
3 2 1 1 2 3
cos 1 0 − − − −1
2 2 2 2 2 2
1 √ √ 1
tan 0 √ 1 3 || − 3 −1 −√ 0
3 3
√ 1 1 √
cot || 3 1 √ 0 −√ −1 − 3 ||
3 3
48 Sê Tay Toán 10