Page 12 - KI - trigonometria
P. 12

Trigonometría                                                                  3° Secundaria




            1.   Calcular:                                     9.   La  suma  del  doble  del  número  de  grados
                                 C +  S                             sexagesimales  con  el  número  de  grados
                             B =      +  6
                                 C S                                centesimales  de  un  ángulo  es  igual  a  140.
                                   −
                 S: # de grados sexagesimales                       Determine la medida circular de dicho ángulo
                 C: # de grados centesimales
                                                                    A) π/6 rad    B) π/5 rad    C) π/4 rad
                 A) 5          B) 4          C) 3                   D) π/3 rad    E) π/2 rad
                 D) 25         E) 2
                                                               10.  Calcule el ángulo en radianes si:
            2.   Calcular el valor de:
                                     −
                                  3S C                                        6S + 5C = 1 040
                               A =
                                   C −  S
                 siendo S y C lo convencional para una medida       siendo  “S”  y  “C”  lo  convencional  para  un
                 angular                                            ángulo.  Dar  como  respuesta  el  número  de
                                                                    radianes
                 A) 18         B) 17         C) 16
                 D) 15         E) 14                                A) π/4        B) π/5        C) π/3
                                                                    D) π/2        E) π

            3.   Calcular el valor de la expresión:            11.  Si: 2S+3C=80; calcular el número de grados
                                   S 20R                           sexagesimales.
                                    +
                             A =  3
                                   C 10R                           A) 10         B) 15         C) 18
                                    −
                                 4                                  D) 21         E) 36

                 A) 5          B) 4          C) 3              12.  Hallar el ángulo en radianes que cumpla con:
                 D) 2          E) 1
                                                                              S +  C  SC
            4.   Si: SC = 90. Calcule “R”                                       2  +  10  =  150

                 A) π          B) π/2        C) π/10
                 D) π/20       E) π/40                              A) π/5        B) 2π/5       C) 3π/5
                                                                    D) 4π/5       E) π
            5.   Si: S = x + 1    ∧    C = x + 5
                 Calcule: “R”                                  13.  Si:   S +  C  −  SC  =  26
                                                                         2     10
                 A) π/6        B) π/5        C) π/4                 Calcule “R”
                 D) π/3        E) π/2
                                                                    A) π/6        B) π/5        C) π/4
            6.   Reducir:                                           D) π/3        E) π/2
                           C +  S  +  C +  S  +  17
                           C −  S  C −  S                      14.  Al  medir  un  ángulo  en  los  sistemas
                                                                    sexagesimal  y  centesimal  se  observa  que  el
                 A) 2          B) 3          C) 4                   doble  del  número  de  grados  sexagesimales
                 D) 5          E) 6                                 excede  al  número  de  grados  centesimales  en
                                                                    24. Calcular la medida del ángulo en radianes
            7.   Simplificar:
                                                                    A) π/20       B) 3π/20      C) 7π/20
                            5S −  4C  C +  S
                        E =         +      −  3                     D) 9π/20      E) 11π/20
                              C −  S  C −  S
                                                               15.  Reducir la expresión:
                 A) 2          B) 3          C) 4
                 D) 1          E) 6                                                  S
                                                                                    3  +  40R
            8.   Hallar N; S y C lo convencional para un ángulo:                A =   C
                                       -1
                                -1
                          -1
                                           -1
                         S  + C  = N(S  - C )                                       4  −  30R

                 A) 17         B) 18         C) 19                  A) 5          B) 4          C) 3
                 D) 20         E) 21                                D) 2          E) 1


              er
             1  Bimestre                                                                                -141-
   7   8   9   10   11   12   13   14   15   16   17