Page 89 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 89

Table 5.1. Pre-weaning gain (kg) and post-weaning gain (kg) for five beef calves.
           Calves       Sex            Sire       Dam           WWG        PWG
           4            Male            1          –             4.5        6.8
           5            Female          3          2             2.9        5.0
           6            Female          1          2             3.9        6.8
           7            Male            4          5             3.5        6.0
           8            Male            3          6             5.0        7.5




            From Eqns 5.2 and 5.3, the fixed effects by fixed effects block of equations for
        both traits in the coefficient matrix of the MME is:

                                             ⎡ ⎢  0.084 0.0000 − 0.03  0.00 ⎤ ⎥
                         ′
                                     12
                           11
            XR X =    ⎡ XR X 1   X 1 ′ R X 2 ⎤ ⎥ =  ⎢  0.00  0.056  0.00 − 0.02  ⎥
              ′
                −1
                         1
                      ⎢
                           21
                                     22
                      ⎣ XR X 1   X 2 ′ R X 2 ⎦  − ⎢  0.03  0.00  0.101 0.00 ⎥
                        ′ 2
                                             ⎢                           ⎥
                                             ⎣  0.00 − 0.02  0 0.00  0.074 ⎦
        The right-hand side for the levels of sex effects for both traits is:
                                                   −
                                          ⎡  0 0.364 + ( 0.203)⎤
                        ′
                                 ′
                                                   −
                    ⎡ XR y  +  XR y    ⎤  ⎢  0.190 + ( 0.118) ⎥
                          11
                                   12
            XR y =  ⎢   1    1        2  ⎥ =  ⎢           ⎥
                                 2
              ′
                −1
                       ′
                                 ′
                    ⎣ ⎢ XR y  +  XR y 2  ⎦ ⎥  ⎢ − ⎢  0.130 + 0.751  ⎥ ⎥
                                   22
                          21
                                 2
                       2
                            1
                                          ⎣ − 0.068 + 0.4437  ⎦
            The inverse of the relationship matrix for the example data is the same as that given
                                                   −1 22
                                                                      11
                                                                              12
                                         −1 12
                                   −1 11
        in Example 3.1. The matrices A g , A g  and A g  are added to Z ′ R Z , Z ′ R Z
                                                                    1    1  1    2
                                                                            12
                22
        and Z ′ R Z , respectively, to obtain the MME. For example, the matrix Z ′ R Z  +
              2    2                                                      1    2
          −1 12
        A g  is:
                          ⎡ −0.069  −0.019  0.000  0.025  0.000  0.038  0.000  0.0000⎤
                          ⎢ − 0.019 − 0.076 −                               ⎥
                          ⎢             0.019  0.000  0.038  0.038  0.000  0.000 ⎥
                          ⎢  0.000 − 0.019 −00.076  0.000  0.038 − 0.019  0.000  0.038⎥
                          ⎢  0.025  0.000  0.000 − 0.080 − 0.019 9  0.000  0.038  0.000 ⎥
                     −
                     1 12
             ′
                  +
            ZR  12 Z 2 A g  =  ⎢ ⎢      0.038 − 0.019 −                     ⎥ ⎥
             1
                                                                           0
                          ⎢  0.000  0.038            0.105  0.000  0.038  0.000 ⎥
                          ⎢  0.038  0.038 − 0.019  0.000  0.000 − 0.105  0.000  0.038⎥
                          ⎢                                0.000 −          ⎥
                          ⎢  0.000  0.000  0.000 0  0.038  0.038  0.086  0.000 ⎥
                          ⎢ ⎣  0.000  0.000  0.038  0.000  0.000  0.038  0 0.000 − 0.086 ⎦ ⎥
        The MME have not been presented because they are too large, but solving the MME
        by direct inversion of the coefficient matrix gives the solutions shown below. See also
        the solutions from a univariate analysis of each trait.
        Multivariate Animal Models                                            73
   84   85   86   87   88   89   90   91   92   93   94