Page 91 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 91

Just as in the univariate model, YD is a vector of the weighted average of a cow’s yield
        records corrected for all fixed effects in the model.
                                                   −1
            Transferring the left non-diagonal terms of A  in Eqn 5.5 to the right side of the
        equation (VanRaden and Wiggans, 1991) gives:
                                     −
                       −
                                      1
                        1
            ( ′  − 1  + G a anim )a ˆ  anim  = G a par (a ˆ  sire  + a ˆ dam )+( ′  − 1  )
                                                       ZR Z YD
            ZR Z
                                   + + G − 1 ∑ a prog  a (  prog  −  0.5a ˆ  mate )
                     2   1
                     3
               par       2                                                  prog
        where a  = 1,   or   if both, one or neither parents are known, respectively, and a   = 1
                                      2                                       .
                                      3                     anim    par     prog
        if the animal’s mate is known and   if unknown. Note that a   = 2a  + 0.5a
            The above equation can be expressed as:
                                      −
                       −
                        1
            ( ′  − 1  + G a anim )a ˆ  anim  = 2G a par  (PA )+(Z R Z′  − 1  )YD
                                       1
            ZR Z
                                         − 1
                                   +0.5G   ∑ a prrog (2ˆ a prog  −  ˆ a mate )  (5.7)
        where PA = parent average.
                                                                     −1
                                                        −1     −1   )  gives:
            Pre-multiplying both sides of the equation by (Z ′ R Z + G a anim
                        +
                               +
            ˆ a  =  W PA W YD W PC                                           (5.8)
             anim   1      2       3
        with:
            PC = ∑  a  prog ( 2a ˆ prog  −  a ˆ mate )  ∑  a prog
                                                                 −1  −1   , W  =
                        1
                                      3
                                                     1
                             2
        The weights  W , W  and  W  =  I, with  W  = (DIAG) 2G a        par   2
                                                                            −1
               −1   −1                    −1    −1    , where (DIAG) = (Z ′ R Z +
                               3
        (DIAG) (Z ′ R Z) and  W  = (DIAG) 0.5G Sa   prog
          −1    ). Equation 5.8 is similar to Eqn 3.8 but the weights are matrices of the
        G a  anim
        order of traits in the multivariate analysis. Equation 5.8 is illustrated below using
        calf 8 in Example 5.1.
                                                           −1
            Since Z = I for calf 8, then Eqn 5.6 becomes YD = RR (y − Xb) = y − Xb. Thus:
            ⎛ YD ⎞   ⎛  y 81  −  b ˆ 1 ⎞  ⎛ .  − .  .  ⎞
                                50 4361⎞ ⎛0 639
                                           =
                81
            ⎜ ⎝ YD ⎠ ⎟  = ⎜ ⎜ ⎝  y 82  − b ⎠ ⎟ =  ⎜ ⎜ ⎝ .  − .  ⎟ ⎜  ⎟ ⎠
                            ⎟
                           ˆ
                                75 6800⎠ ⎝0 700.
                82
                           2
        Both parents of calf 8 are known, therefore:
                                ⎛  0.1958  −  0.0858⎞
            DIAG =  R − 1  + 2 G − 1  =  ⎜ ⎝ − 0.0858  0.1211⎠ ⎟
                 8
        and:
                                           0 1191⎞
                                ⎛  0 8476 − .
                                   .
            W = ( DIAG) − 1 2 G − 1  =  ⎜        ⎟  and
              1                 ⎝ − 0 0237  0 6092⎠
                                            .
                                    .
                          ⎛0 1524.  0 1191 ⎞
                                    .
                        =
            W =   I − W =
              2        1  ⎜ ⎝0 0237.  0 3908 ⎟ ⎠
                                    .
        Then, from Eqn 5.8:
            ⎛  ˆ a ⎞  ⎛ PA ⎞     ⎛ YD ⎞      ⎛  . 0 099 ⎞  ⎛ .
                                                           0 639⎞
              81
                                     81
                         81
            ⎜ ⎝  ˆ a ⎠ ⎟  = W 1 ⎜ ⎝ PA ⎠ ⎟  + W 2 ⎜ ⎝Y D ⎠ ⎟  = W 1 ⎜ ⎝  . 0 11735⎠ ⎟  + W 2 ⎜ ⎝ .  ⎟
                                                           0 700⎠
                         82
                                     82
              82
                    0 06325⎞
                   ⎛ .        ⎛ 0 180755⎞  ⎛ 0 244⎞
                                .
                                            .
                 =  ⎜ ⎝ .  ⎟  + ⎜ ⎝ 0 28870⎠ ⎟  =  ⎜ ⎝ 0 392⎠ ⎟
                    0 10335⎠
                                            .
                                .
        Multivariate Animal Models                                            75
   86   87   88   89   90   91   92   93   94   95   96