Page 514 - Traité de chimie thérapeutique 6 Médicaments antitumoraux
P. 514

472               MEDICAMENTS INDUISANTOUSTABILISANTDES COUPURES DE L'ADN


               Cette modification, réalisée dans AQ4N rend l'azote terminal électriquement neutre et
             entraîne une faible toxicité pour I'ADN, dans les conditions physiologiques. Par contre,
             dans les tissus hypoxiques, ce composé est activé selon un processus de bioréduction
             dont le mécanisme est décrit dans le chapitre 39.


             BIBLIOGRAPHIE
             ARTICLES ET OUVRAGES GÉNÉRAUX
              CHENG C.C. et al., The design, synthesis and development of a new class of potent
               antineoplastic anthraquinones, Progress in Medicinal chemistry, 1983, 20, 83-118.
              ZEE-CHENG R.W.Y., CHENG C.C., Anthraquinone anticancer agents, Drugs of the
               Future, 1983, 8, 229-249.
              PULLMAN B., Molecular mechanisms of specificity in DNA-antitumour drug interactions,
                Adv. Drug Res., 1989, 18, 1-113.
              HUSSON M.-C., BECKER A., Médicaments anticancéreux. De la préparation à l'adminis-
                tration, optimisation, Éditions Médicales Internationales, Cachan, 1995.
              WANG H. et al., ATP-bound topoisomerase Il as a target for antitumor drugs, J. Biol.
                Chem., 2001, 276, 15990-15995.
              SYNTHÈSES ET PROPRIÉTÉS PHYSICO-CHIMIQUES
              ZEE-CHENG R.K.-Y., CHENG C.C., Antineoplastic agents. Structure-activity relationship
                study of bis(substituted aminoalkylamino)/anthraquinones, J. Med. Chem., 1978, 21,
                291-294.
              MURDOCK K.C. et al., Antitumor agents. 1. 1,4-Bis[(aminoalkyl)amino]-9,10-anthrace-
                nediones, J. Med. Chem., 1979, 22, 1024-1030.
              KRAPCHO A.P. et al., Synthesis of unsymmetrical 1,4-bis[(aminoalkyl) amino]anthra-
                cene-9,10-diones for antineoplastic evaluation, J. Org. Chem., 1984, 49, 5253-5255.
              SHOWALTER H.D.H. et al., A facile synthesis of functionalized 9,10-anthracenediones
                via tosylate and triflate phenolic activation, Tetrahedron Lett., 1985, 26, 157-160.
               CANO P. et al., Polycyclic hydroxyquinones. Part 22. Diels-Alder reaction with chlore
                derivatives of anthracene-1,4,9,10-tetraone, J. Chem. Soc. Perkin Trans. I, 1986,
                 1923-1927.
               WESTMORE J.B., ALAUDDIN. M.M., Ammonia chimical ionization mass spectrometry,
                 Mass Spectrom. Rev., 1986, 5, 381-466.
               BEIJNEN J.H. et al., Mitoxantrone hydrochloride, in Analytical profiles of drug substan-
                 ces, Florey K., ed., Academic Press, New York, 1988, vol. 17, 221-258.
               MARASINGHE P.A.B., GILLISPIE G.D., Intramolecular hydrogen bonding. IX. Theoretical
                 geometries of substituted anthraquinones relevant to proton transfer studies, Chem.
                 Phys., 1989, 136, 249-257.
               EHNINGER G., Carbon-13 NMR studies of some di- and tetra-substituted anthracene-
                 9, 10-dione derivatives related to the anticancer drug mitoxantrone, Magn. Reson.
                Chem., 1991, 29, 1072-1074.
               KRAPCHO A.P. et al., Synthesis and antitumor evaluations of symmetrically and unsym-
                metrically substituted 1,4-Bis[(aminoalkyl)amino]anthracene-9,10-diones and 1,4-
   509   510   511   512   513   514   515   516   517   518   519