Page 56 - ISCI’2017
P. 56

Definition 3 [40]. Alternantive (n, k, d) Goppa code Г(L, G) over GF(q) consists of all vectors

            c = (с1, с2, …, сn) such that
                                                    Rc(x) ≡ 0 mod G(x),                                                        (16)

            where

                                                             n   c
                                                    R c () x = ∑  i  ,
                                                            i= 1 x α−  i
            G(x) is a polynomial with the coefficients from GF(q ) (Goppa polynomial), L = (α1, α2, …, αn) is a
                                                               m
            subset of the elements from GF(q ) such that G(αi) ≠ 0 ∀αi∈L.
                                             m
                  Using the expression  (16), validation  matrix of  the Goppa code  can be set as follows.

            Polynomial x - αi in a ring of polynomials in modulus G(x) has an inverse polynomial:
                                                          () G
                                                         Gx −    ( )α
                                            (x α  −  i ) =  −  1  −  x α−  i  i  G −  1 ()α  i  .

                  Consequently, the vector c = (с1, с2, …, сn) belongs to Goppa code Г(L, G) if and only if

                                                        () G α−
                                                  n   Gx      ( )
                                                 ∑  c i          i  G α i   0
                                                                      () = .                                            (17)
                                                                     1
                                                                    −
                                                 i= 1    x α−  i
                            r
                                                    m
                                  i
                  If  ()G x = ∑ gx , where gi ∈ GF(q ) и gr ≠ 0, then
                                i
                            i= 0
                   Gx       ( )  =  g  (x r  1 −  x α +  r−  2  ... α ++  r  1 −  ) g  (x α  r−  2  ... α ++  r  1 −  ) ... g  (x α  +  ) g .
                     () G α−
                                                                                   ++
                                                                                                  +
                                                            +
                              i
                       x α−  i     r            i       i      r  1 −  i       i         2      i    1
                                                                       r-1
                                                                           r-2
                  Equating to zero according to (17) all coefficients at x , x , …, 1, obtain that the condition
            cH  = 0 is performed only if
               T

                                      g G α  −  1 ( )                 g G −  1 (α  )        ...
                                                                               2
                                 (g   +  r α  gG α  )  1  −  1 ( )  (g  +  r α  gG −  1 (α  )  ...
                                                                             )
                       H =         r−  1  1  r     1               r−  1  2  r     2
                                          ...                             ...               ...
                            
                            
                                                                        ... α
                                                                                  )
                                        ... α
                             (g + α  1 g ++  1 r−  1 gG α  r )  −  1 ( ) (g + α  2 g ++  2 r−  1 gG −  1 (α  2 ) ...
                                                                                  r
                                                               1
                                                         1
                               1
                                     2
                                                                      2
                                                   ...           g G − 1 (α n )      
                                                                  r
                                                   ...      (g r− 1  + α  n gG − 1 (α  n )     =
                                                                       )
                                                                      r
                                                   ...               ...             
                                                                                    )
                                                                  ... α
                                                   ... (g + α  n g ++   n r− 1 g r )G − 1 (α n   
                                                               2
                                                         1
                          g r   0   ...  0    1   1   ...  1      G α 1   0      ...    0   
                                                                    −
                                                                     1
                                                                      ( )
                         g     g    ...  0     α  α   ...  α       0     G − 1 (α ) ...   0     
                      =    r  1 −  r          1    2        n                  2                  .
                          ...  ...  ... ...    ...  ...  ...  ...        ...  ...  ...  ...  
                          g 1  g 2  ... g r        α  1 r  1 −  α  2 r  1 −  ... α  n   r  1 −      0  0  ... G − 1 (α n   )     
            Matrix
            56
   51   52   53   54   55   56   57   58   59   60   61