Page 266 - Buku Siap OSN Matematika SMP 2015(1)
P. 266

Solusi Olimpiade Matematika 2013




               f(1) = 2000
               f(x + 1) + 12 = f(x)           f(x + 1) = f(x) – 12

               Sehingga:

               f(x + 1) = f(x) – 12

               untuk x = 1

               f(x + 1) = f(x) – 12

               f(1 + 1) = f(1) – 12

               f(2) = 2000 – 12

               untuk x = 2

               f(x + 1) = f(x) – 12
               f(2 + 1) = f(2) – 12

               f(3) = (2000 – 12) – 12

               untuk x = 3

               f(x + 1) = f(x) – 12

               f(3 + 1) = f(3) – 12

               f(4) = (2000 – 2(12)) – 12

               untuk x = 4
               f(x + 1) = f(x) – 12

               f(4 + 1) = f(4) – 12

               f(5) = (2000 – 3(12)) – 12

                

               untuk x = x

               f(x + 1) = f(x) – 12

               f(x + 1) = [2000 – (x – 1)(12)] – 12

               f(x + 1) = [2000 – (12x – 12)] – 12

               f(x + 1) = 2000 – 12x + 12 – 12



             Siap OSN Matematika SMP 2015                                                     257
   261   262   263   264   265   266   267   268   269   270   271