Page 232 - FUNDAMENTALS OF COMPUTER
P. 232

NPP













                   232                         Fundamentals of Computers                           NPP


                      (c) The given expression is                 (c)   {XE JE ì`§OH$:
                                            F =  (A +  B +  C ) (A.  +  B +  C ) (A.  +  B +  C )
                      The expression has three maxterms and the   g_rH$aU _| VrZ _¡ŠgQ>_© h¢ VWm H$aZm°\$ _¡n Ed§
                  karnaugh map and the groups can be drawn    g_yhm| H$mo {ZåZ àH$ma go ~Zm`m Om gH$Vm h¡:
                  as:

                                               A  B C  00  01    11     10


                                                0    0     1      1     0


                                                1    1     1      1     0



                      There are two pairs as shown above. Con-    Bg_| Xmo no`a h¢ O¡gm D$na Xem©`m J`m h¡Ÿ& d{Q>©H$b
                  sider the  vertical pair. A changes. Therefore  no`a na {dMma H$a| A n[ad{V©V hmoVm h¡Ÿ& AV: A H$mo hQ>m
                  eliminate A. The values of B.C is 10, therefore
                  write it as:(B +  C )                       X|Ÿ& B.C H$m 10 h¡ AV: Bgo (B +  C ) {bI|Ÿ&
                      Consider the second pair. A is equal to ‘0’  Xygao no`a na {dMma H$a|Ÿ& A H$m _mZ 0 h¡ Bg{bE
                  therefore put A and move from left to right (00  A aI| VWm ~m§`o go Xm`| (00 go grYo 10) Om`|Ÿ& C H$m
                  to directly 10) C is constant at ‘0’. Therefore
                  write C. The term is:  (A  +  C)            _mZ '0' na pñWa h¡Ÿ& AV: C {bI|Ÿ& nX (A  +  C) h¡Ÿ&
                      The simplified expression in POS form is    POS \$m°_© _| gabrH¥$V g_rH$aU Xmo nXm| H$m JwUm
                  product of the two terms- F =  (B +  C ) (A.  +  C )  h¡:  F =  (B +  C ) (A.  +  C )

                      (d) The given expression is  Y = Σm (4, 5, 7)  (d) Cnamoº$ ì`§OH$  Y = Σm (4, 5, 7) go K-_on
                  The K-map and the groups can be drawn as:   VWm g_yh {ZåZmZwgma ~Zm gH$Vo h¢:


                                                 A  B C  00  01    11    10


                                                 0    0      0     0      0


                                                 1    1      1     1      0


                      The solution gives one quad overlapping     EH$ ŠdmS> VWm EH$ no`a AmodaboqnJ h¡ & ŠdmS> _|
                  with one pair.  The term for quad is A because  ~mE§ go XmE§ OmZo na B d C XmoZm| n[ad{V©V hmo aho h¢ d A
                  B and C change and A is constant at ‘0’. Con-
                  sider the pair,  A is eliminated when we move  = 0 na pñWa h¡ & AV… A àmßV hmoJm Ÿ& no`a _| D$na go
                  downward. BC is constant at 10. Thus, write  ZrMo AmZo na A n[ad{V©V hmo ahm h¡ VWm BC = 10 na
                  (B+  C ).                                   pñWa h¡ Ÿ& AV… (B+  C ) àmßV hmoJmŸ&
   227   228   229   230   231   232   233   234   235   236   237