Page 233 - FUNDAMENTALS OF COMPUTER
P. 233
NPP
NPP Number System, Boolean Algebra and Logic Circuits 233
The simplified expression in POS form is: BZ XmoZm| H$m JwUZ\$b boZo na:
Y = . A (B + C )
(e) Y = Σm (0, 1, 3, 7, 8, 9, 13, 14, 12)
The above expression results to the follow- Cnamoº$ ì`§OH$ go {ZåZ K-_on VWm g_yh àmßV hm|Jo:
ing K-map and groups:
A B C D 00 01 11 10
00 1 1 1 0
01 0 0 1 0
11 1 1 0 1
10 1 1 0 0
The simplified expression for four pairs Ma no`am| go gab ì`§OH$ {ZåZmZwgma ~ZoJm:
will be as follows:
Y = (A+ B+ C ) (A. + C+ D ) (C. + D+ B ) (A. + B+ D )
(f) F = πM (1, 3, 6, 7)
The K-map and the groups for this equa- Cnamoº$ g_rH$aU go K-_on VWm J«wn Bg àH$ma
tion are as follows: àmßV hm|Jo:
A B C 00 01 11 10
0 1 0 0 1
1 1 1 0 0
The two pairs give the simplified POS form: Xmo no`am| go POS ê$n _| gab ì`§OH$ {ZåZmZwgma
àmßV hmoJm:
F = (A + C ) (A. + B )
(g) The given expression is: (g) {X`m J`m ì`§OH$ h¡:
F = πM (2, 4, 7, 9, 12, 13, 15)
The K-map and the groups for the expres- Cnamoº$ ì`§OH$ go {ZåZ K-_on VWm g_yh àmßV
sion are as follows: hm|Jo: