Page 234 - FUNDAMENTALS OF COMPUTER
P. 234

234                         Fundamentals of Computers                           NPP

                                                A B  C D  00  01   11     10



                                                 00    1     1     1      0


                                                 01    0     1     0      1


                                                 11    0     0      0     1


                                                 10    1     0     1      1

                      Three pairs and one single gives the sim-   VrZ no`am| VWm EH$ qgJb go {ZåZ gab ì`§OH$
                  plified expression in POS form as:          àmßV hmoJm:

                                          F = (B+ C+  D ) (A.  + C+  D ) (B.  +  C+ D ) (A.  + B+ C+  ) D
                       Problem 3.70   NPP                          àíZ 3.70
                      Simplify the following Boolean expres-      {ZåZ ~y{b`Z ì`§OH$m| H$mo K-_on go hb H$amo:
                  sion using K-map method:
                         (a) F = Σm (0, 4, 7) + d (1, 6)          (b) Y = πM (1, 3, 7) . d (0, 6)
                         (c) F (A, B, C, D) = Σm (0, 4, 5, 7)     (d) F (X, Y, Z) = πM (1, 3)
                  Solution:                                   hc:
                      (a) The given expression is:                (a)  {X`o J`o ì`§OH$:
                                                      F = Σm (0, 4, 7) + d (1, 6)
                      It contains three minterms and two don’t    _| VrZ {_ÝQ>_© VWm Xmo S>m|Q> Ho$`a H§$S>reZ h¢ Ÿ&
                  care conditions. The Karnaugh map can be drawn  BgH$m k-_on {ZåZmZwgma ~Zm`m Om gH$Vm h¡:
                  as:


                                               A  B C  00  01    11    10


                                               0    1      x     0      0


                                                1   1      0     1      x


                      Taking two adjacent 1’s, the only choice is  Xmo nmg-nmg Ho$ 1 go EH$ no`a ~Zm gH$Vo h¢:
                  a pair. So draw a pair as below:
   229   230   231   232   233   234   235   236   237   238   239