Page 307 - FUNDAMENTALS OF COMPUTER
P. 307

NPP













                  NPP               Number System, Boolean Algebra and Logic Circuits              307


                   3.40 Application of Gates                  3.40 JoQ>m| Ho$ Cn`moJ
                      Logic gates are  basic building blocks of   bm°{OH$ JoQ> H$åß`yQ>a Ho$ n[anW H$s _yb^yV BH$mB`m±
                  computer circuit. All the units in the computer  hmoVo h¢Ÿ& H$åß`yQ>a Ho$ gmao n[anWm| _| `o g~go N>moQ>r BH$mB©
                  circuit use logic gates as the smallest element.
                  A circuit containing logic gates is called Logic  H$s Vah Cn`moJ _| AmVo h¢Ÿ& bm°{OH$ JoQ>m| go {_bH$a ~Zo
                  circuit. Different types of logic circuits are used  n[anW H$mo bm°{OH$ n[anW H$hVo h¢Ÿ& H$åß`yQ>a _| H$B©
                  in computers. For example, Half Adder, Full  àH$ma Ho$ bm°{OH$ n[anW Cn`moJ _| AmVo h¢Ÿ& O¡go hm\$
                  Adder, multiplexer,  Registers, Decoder,    ES>a, \w$b ES>a, _pëQ>ßboŠga, {S>_pëQ>ßboŠga, a{OñQ>a,
                  Counters etc.                               {S>H$moS>a, H$mD§$Q>a Am{XŸ&
                      Logic  gates are also useful  in  other     bm°{OH$ JoQ>m| H$m Cn`moJ AÝ` ñWmZm| na Cn`moJ _|
                  electronic circuits called digital circuits. Other  AmZodmbo {S>{OQ>b n[anWm|  _| hmoVm  h¡Ÿ& O¡go  pâbn-
                  circuits made with the help of logic gates are
                  flip-flops, parity checker, parity generator,  âbm°n, no[aQ>r MoH$a, no[aQ>r OZaoQ>a, EÝH$moS>a, H§$noaoQ>a,
                  comparator, Demultiplexer,  Encoder, Half   hm\$ g~Q´>oŠQ>a, \w$b g~Q´>oŠQ>a Am{XŸ&
                  subtractor, full subtractor etc.
                      CPU is the brain of computer. It includes   grnr`y H$åß`yQ>a H$m _pñVîH$ hmoVm h¡Ÿ& Bg_| E.Eb.
                  ALU, CU and Registers. These three units of  `y. gr.nr.`y VWm a{OñQ>g© hmoVo h¡Ÿ& `o VrZm| BH$mB`m±
                  the CPU are built with the help of logic gates.
                                                              bm°{OH$ JoQ>m| go hr ~Zr hmoVr h¢Ÿ&
                   3.41 Positive and Negative Logic           3.41 YZmË_H$ VWm F$UmË_H$ cm°{OH$
                      As we  know that  in digital  circuits the  O¡gm {H$ h_ OmZVo h¢ H§$ß`yQ>a n[anW _| OmZH$mar
                  information is stored in the form of 0 and 1.  0 VWm 1 Ho$ ê$n _| g§J«{hV hmoVr h¡Ÿ& ~mBZar A§H$ 0
                  Binary digits 0 and 1 in the digital  circuits
                  represent voltage levels. There are two types of  VWm 1 n[anW _| EH$ {ZpíMV dm°ëQ>oO ñVa H$mo Xem©Vo
                  voltage level definitions:                  h¢Ÿ& d°mëQ>oO ñVa H$s Xmo Vah H$s n[a^mfmE± hmoVr h¢:
                  Positive Logic:                             YZmË_H$ cm°{OH$:
                      In positive logic,  a  high  voltage signal  Bg cm°{OH$ n[a^mfm _| CÀM dmëQ>oO ""1'' H$mo
                  represents "1" and a  low voltage  signal   VWm {ZåZ  dm°ëQ>oO ""0''  H$mo Xem©Vm  h¡Ÿ& {S>{OQ>c
                  represents "0".  This is most  frequently  used
                  logic definition in digital circuits. For example  n[anWm| _| Bg n[a^mfm H$m AË`{YH$ Cn`moJ hmoVm h¡Ÿ&
                  in TTL circuits +5V  represents  "1"  and  0V  O¡go TTL n[anW _| +5 Volt "1" Xem©Vm h¡ VWm 0 Volt
                  represents "0".                             "0" Xem©Vm h¡Ÿ&
                  Negative Logic:                             F$UmË_H$ cm°{OH$:
                      In negative logic, a high voltage represents  Bg cm°{OH$ _| CÀM dm°ëQ>oO ""0'' Xem©Vm h¡ VWm
                  "0" and a low voltage signal represents "1". For  {ZåZ d°mëQ>oO ""1'' Xem©Vm h¡Ÿ& O¡go RS-232 C H$ZoŠQ>a
                  example in RS-232C connector "1" represents a  _| –3Volt  go –15 Volt, ""1'' Xem©Vo h¢ VWm +3Volt
                  voltage from (– 3V to – 15V) and "0" represents  go +15Volt, ""0'' Xem©Vm h¡Ÿ&
                  a voltage from (+ 3V to +15V).
   302   303   304   305   306   307   308   309   310   311   312