Page 309 - FUNDAMENTALS OF COMPUTER
P. 309

NPP













                  NPP               Number System, Boolean Algebra and Logic Circuits              309


                  will help in drawing the logic circuit of Half  AmgmZr go H$s Om gH$Vr h¢Ÿ& Carry Ho$ ñV§^ H$mo gË`-
                  Adder. Consider  the column  for carry  in the  Vm{bH$m _| XoIZo na kmV hmoVm h¡ {H$ Carry = A.B.
                  truth table. It is product of A and B. Thus, an  AV… EH$  AND JoQ> H$m AmCQ>nwQ>  Carry àXmZ H$a
                  AND gate can be used to provide carry. As we  gH$Vm h¡Ÿ& gmW hr My±{H$ XOR JoQ> H$m Cn`moJ `moJ àXmZ
                  know  that XOR  gate gives arithmetic sum  of  H$aZo Ho$ {b`o {H$`m OmVm h¡ Bg àH$ma EH$ hm\$ ES>a
                  inputs. Thus, a Half Adder logic circuit contains  bm°{OH$ g{H©$Q> _| Xmo bm°{OH$ JoQ²>g AND VWm XOR
                  two logic gates AND and XOR.
                                                              hmoVo h¢Ÿ&






















                      Thus, the functions for Sum and Carry can   Sum VWm Carry Ho$ \$bZ Bg Vah go {bIo Om
                  be written as:
                                                              gH$Vo h¢:
                                                      Carry = A.B
                                               Sum =  .A B +   B . A   (in SOP Form)

                                               Sum =  (A+ B ) (A.  +  B ) (in POS Form)
                      The above expression for Half Adder can      CnamoŠV g_rH$aUm| H$s ghm`Vm go hm\$ ES>a H$mo
                  be used to implement the logic circuit in NAND
                  gates or NOR gates only.                    NAND JoQ>m| `m NOR JoQ>m| H$s ghm`Vm go ~Zm`m Om
                                                              gH$Vm h¡Ÿ&
                       Problem 3.84                                 àíZ 3.84
                      Draw Half Adder using NOR-NOR gates         hm\$ ES>a H$mo NOR-NOR JoQ>m| go ~ZmAmoŸ&
                  only.
                  Solution:                                   hc:
                      As we  know that  the POS  form is  most    POS ê$n H$mo boZo na NOR JoQ> go ~ZmZm AmgmZ
                  suitable to implement a Boolean expression in  hmoVm h¡Ÿ& AV… {ZåZ g_rH$aU boZo na…
                  NOR-NOR gates. Thus, take POS Form:
                                          Carry = A.B  and  Sum =  (A+ B ) (A.  + B )
   304   305   306   307   308   309   310   311   312   313   314