Page 73 - Modul problem posing berorientasi stem
P. 73

b. Aturan fungsi pangkat.


                    Jika     (  ) =       , n = bilangan bulat positif   maka    ′(  ) =     
                    Bukti.

                                              (   + ℎ) −   (  )   (   + ℎ) −   
                                  ′(  ) =                   =       
                                         →         ℎ           →        ℎ
                                                                  ℎ
                                                    ℎ    (   − 1)  


                                         +         +                +. . . . +    ℎ      + ℎ −   
                                =             1!           2!
                                   →                             ℎ
                                            (   )
                                  (                ....          )
                              =         !     !
                              →
                                            (   )
                              =       (  +           +. . . . +    ℎ  + ℎ  )
                               →     !          !
                              =     
                    c. Aturan perkalian dengan konstanta
                    Jika  (    )(  ) =     (  )    maka    (    )′(  ) =     ′(  )

                    Contoh 4.4.

                    Jika   f(x) = 3  sinx    maka      ′(  ) = 3          


                    d. Aturan Jumlah dan Selisih
                    Jika  (   ±   )(  ) =   (  ) ±   (  )     maka  (   ±   )′(  ) =   ′(  ) ±   ′(  )

                    Contoh  4.5.

                    Jika   f(x) = 2sinx + x  -  cos x       maka     ′(  ) = 2           + 3   +          
                                             3


                    e. Aturan Hasil Kali
                    Jika (  .   )(  ) =   (  ).   (  )  maka (  .   )′(  ) =   ′(  ).   (  ) +   (  ).   ′(  )

                    Bukti
                                              (   + ℎ).   (   + ℎ) −   (  ).   (  )
                            (  .   )′(  ) =       
                                          →                ℎ
                                    (   + ℎ).   (   + ℎ) −   (  )  (   + ℎ) +   (  )  (   + ℎ) −   (  ).   (  )
                            =       
                                →                                ℎ
                              =        (   + ℎ)   (   )  ( )  +         (  )   (   )  ( )
                                 →                       →
                              =        (   + ℎ)         (   )  ( )  +   (  )         (   )  ( )
                                 →          →                    →
                              =  (  ).   ′(  ) +   (  ).   ′(  )

                              =   ′(  ).   (  ) +   (  ).   ′(  )       atau    (  .   )′ =   ′   +     ′


                                                                                                   64
   68   69   70   71   72   73   74   75   76   77   78