Page 6 - M A T R I K S
P. 6

1    2   2   1     1 + 2     2 +1    3     3
                                   Maka  A + B =       +       =               =    
                                          3  4    − 2  −1    3 + ( − ) 2  4 + ( − ) 1     1  3 


                                    2    0     3    1        5  −   2
                  Contoh 2: Jika  A  =     ,  B  =      dan C  =     , tentukan :
                                     1  3       2  4          4  0  
                                   a). A + B   b). B + A         c). B + C      d). A + (B + C)        e) A+B   f). (A + B) + C

                                     2     0  3   1  5    1
                  Jawab     : a. A + B =      +      =    
                                      1  3    2  4    3  7 
                                     3     1  2   0  5    1
                                   b. B + A =      +     =    
                                      2  4    1  3    3  7 
                                     3     1  5  −   2  8  −   1
                                                       =
                                   c. B + C =      +       
                                      2  4    4  0    6  4  

                                           2    0  8  −   1  10  −1 
                            d. A + (B + C) =     +        = =      
                                            1  3    6  4     7   7  
                                      2     0  3   1  5   1
                                                       =
                                   e. (A + B) =      +       
                                       1  3    2  4   3  7 
                                         5    1  5  −   2  10  −1 
                                                           =
                                   f. (A + B)+C =      +       
                                          3  7    4  0     7  7  

                                        1     2  −1  −   2       0    0
                  Contoh 3: Diketahui  A  =              dan O  =      .
                                               +
                                         3  4   − 3  − 4          0  0 
                                   Tunjukkan : a. A + (-A) = (-A) + A = O
                                                       b. A + O = O + A = A

                                       1     2  −1  −   2  0   0
                  Jawab     : a. A + (-A) =      +           
                                                           =
                                        3  4    − 3  − 4   0  0 

                                       −1   −   2  1   2  0   0
                                                          =
                                                 +
                                       (-A) + A =           
                                        − 3  − 4   3  4   0  0 

                                     1     2  0   0  1   2
                                   b. A + O =      +      
                                                     =
                                      3  4    0  0   3  4 

                                     0     0  1   2  1   2
                                                     =
                                       O + A =      +      
                                      0  0    3  4   3  4 

                      Sifat-sifat penjumlahan matriks :
                      1.  A + B = B + A  (bersifat komutatif)
                      2.  A + (B + C) = (A + B) + C (bersifat asosiatif)
                      3.  A + O = O + A = A (O matriks identitas dari penjumlahan)
                      4.  A + (-A) = (-A) + A = O (-A matriks invers penjumlahan)










                                                                                                               6
   1   2   3   4   5   6   7   8   9   10   11