Page 17 - CBAC Newsletter 2015
P. 17
23. Shmuylovich L and Kovács SJ. Load-independent index of diastolic filling: model-based derivation with in vivo
validation in control and diastolic dysfunction subjects J Appl Physiol 101: 92-101, 2006.
24. Wiggers CJ. Dynamics of ventricular contraction under abnormal conditions. Circulation 5: 321-348, 1952.
25. Zaky A, Grabhorn L, and Feigenbaum H. Movement of the mitral ring: a study in ultrasonography.
Cardiovasc Res 1: 121-131, 1967.
26. Zhang W, Chung CS, Riordan MM, Wu Y, Shmuylovich L, and Kovács SJ. The Kinematic Filling Efficiency Index of
the Left Ventricle: Contrasting Normal vs. Diabetic Physiology. Ultrasound Med Biol 33: 842-850, 2007.
27. Mossahebi S, Kovács SJ. Kinematic Modeling Based Decomposition of Transmitral Flow (Doppler E-wave)
Deceleration Time into Stiffness and Relaxation Components. Cardiovascular Engineering & Technology,
5(1): 25-34, 2014.
28. Mossahebi S, Zhu S, Kovács SJ. Fractionating E-wave deceleration time into its stiffness and relaxation
components distinguishes pseudonormal from normal filling. Circulation: Cardiovascular Imaging, 2015.
29. Ghosh E, Kovács SJ. Quantitative Assessment of Left Ventricular Diastolic Function Via Longitudinal and
Transverse Flow Impedances. Invited Paper: 34th Annual International IEEE EMBS Conference Proceedings
2012:5595-5598, 2012.
30. Ghosh E, Kovács SJ. Early Left Ventricular Diastolic Function Quantitation Using Directional Impedances.
Annals BME. 41(6): 1269-1278, 2013.
31. Mossahebi S, Zhu S, Chen H, Shmuylovich L, Ghosh E, Kovács SJ. Quantification of global diastolic function by
kinematic modeling-based analysis of transmitral flow via the Parametrized Diastolic Filling formalism.
J Vis Exp 91: e51471, 2014.
32. Shmuylovich L, Kovács SJ. Stiffness and relaxation components of the exponential and logistic time constants
may be used to derive a load-independent index of isovolumic pressure decay. Am J Physiol Heart Circ
Physiol. 295(6): H2551-9, 2008.
33. Chung CS, Kovács SJ. The physical determinants of left ventricular isovolumic pressure decline: Model-based
prediction with in-vivo validation. Am J Physiol Heart Circ Physiol. 2008;294:H1589-H1596.
34. Shmuylovich L, Kovács SJ. E-wave Deceleration Time May Not Provide an Accurate Determination of Left
Ventricular Chamber Stiffness if Left Ventricular Relaxation/Viscoelasticity is Unknown. Am J Physiol Heart
Circ Physiol. 292: H2712-H2720, 2007.
35. Zhang W, Chung CS, Shmuylovich L, Kovács SJ. Viewpoint: Is Left Ventricular Volume During Diastasis the Real
Equilibrium Volume and, What is its Relationship to Diastolic Suction? J Appl Physiol, 105: 1012-1014, 2008.
36. Shmuylovich L, Kovács SJ. E-wave Deceleration Time May Not Provide an Accurate Determination of Left
Ventricular Chamber Stiffness if Left Ventricular Relaxation/Viscoelasticity is Unknown. Am J Physiol Heart
Circ Physiol. 292: H2712-H2720, 2007.
37. Zhang W, Kovács SJ. The Diastatic Pressure-Volume Relationship Is Not the Same as the End-Diastolic
Pressure-Volume Relationship. Am J Physiol.294: 2750-2760, 2008.
38. Sharma K, Kass DA Heart failure with preserved ejection fraction: mechanisms, clinical features, and therapies.
Circ Res. 2014 Jun 20;115(1):79-96. doi: 10.1161/CIRCRESAHA.115.302922.
39. Borlaug BA, Kass DA. Invasive hemodynamic assessment in heart failure. Cardiol Clin 29 (2011) 269–280
doi:10.1016/j.ccl.2011.03.003
40. Zile MR, Baicu CF, Iknomidis JS et al. Myocardial Stiffness in Patients With Heart Failure and a Preserved
Ejection Fraction: Contributions of Collagen and Titin. Circulation. 2015; 131:1247–1259.
doi:10.1161/CIRCULATIONAHA.114.013215.
CBAC Center Heartbeat | 11