Page 17 - CBAC Newsletter 2015
P. 17

23.   Shmuylovich L and Kovács SJ. Load-independent index of diastolic filling: model-based derivation with in vivo
               validation in control and diastolic dysfunction subjects  J Appl Physiol 101: 92-101, 2006.
        24.   Wiggers CJ. Dynamics of ventricular contraction under abnormal conditions. Circulation 5: 321-348, 1952.
        25.   Zaky A, Grabhorn L, and Feigenbaum H. Movement of the mitral ring: a study in ultrasonography.
               Cardiovasc Res 1: 121-131, 1967.
        26.   Zhang W, Chung CS, Riordan MM, Wu Y, Shmuylovich L, and Kovács SJ. The Kinematic Filling Efficiency Index of
               the Left Ventricle: Contrasting Normal vs. Diabetic Physiology. Ultrasound Med Biol 33: 842-850, 2007.
        27.   Mossahebi S, Kovács SJ. Kinematic Modeling Based Decomposition of Transmitral Flow (Doppler E-wave)
               Deceleration Time into Stiffness and Relaxation Components. Cardiovascular Engineering & Technology,
               5(1): 25-34, 2014.
        28.   Mossahebi S, Zhu S, Kovács SJ. Fractionating E-wave deceleration time into its stiffness and relaxation
               components distinguishes pseudonormal from normal filling. Circulation: Cardiovascular Imaging, 2015.
        29.   Ghosh E, Kovács SJ. Quantitative Assessment of Left Ventricular Diastolic Function Via Longitudinal and
               Transverse Flow Impedances. Invited Paper: 34th Annual International IEEE EMBS Conference Proceedings
               2012:5595-5598, 2012.
        30.   Ghosh E, Kovács SJ. Early Left Ventricular Diastolic Function Quantitation Using Directional Impedances.
               Annals BME. 41(6): 1269-1278, 2013.
        31.   Mossahebi S, Zhu S, Chen H, Shmuylovich L, Ghosh E, Kovács SJ. Quantification of global diastolic function by
               kinematic modeling-based analysis of transmitral flow via the Parametrized Diastolic Filling formalism.
               J Vis Exp 91: e51471, 2014.
        32.   Shmuylovich L, Kovács SJ. Stiffness and relaxation components of the exponential and logistic time constants
               may be used to derive a load-independent index of isovolumic pressure decay. Am J Physiol Heart Circ
               Physiol. 295(6): H2551-9, 2008.
        33.   Chung CS, Kovács SJ. The physical determinants of left ventricular isovolumic pressure decline: Model-based
               prediction with in-vivo validation. Am J Physiol Heart Circ Physiol. 2008;294:H1589-H1596.
        34.   Shmuylovich L, Kovács SJ. E-wave Deceleration Time May Not Provide an Accurate Determination of Left
               Ventricular Chamber Stiffness if Left Ventricular Relaxation/Viscoelasticity is Unknown. Am J Physiol Heart
               Circ Physiol. 292: H2712-H2720, 2007.
        35.   Zhang W, Chung CS, Shmuylovich L, Kovács SJ. Viewpoint: Is Left Ventricular Volume During Diastasis the Real
               Equilibrium Volume and, What is its Relationship to Diastolic Suction? J Appl Physiol, 105: 1012-1014, 2008.
        36.   Shmuylovich L, Kovács SJ. E-wave Deceleration Time May Not Provide an Accurate Determination of Left
               Ventricular Chamber Stiffness if Left Ventricular Relaxation/Viscoelasticity is Unknown. Am J Physiol Heart
               Circ Physiol. 292: H2712-H2720, 2007.
        37.   Zhang W, Kovács SJ. The Diastatic Pressure-Volume Relationship Is Not the Same as the End-Diastolic
               Pressure-Volume Relationship. Am J Physiol.294: 2750-2760, 2008.
        38.   Sharma K, Kass DA Heart failure with preserved ejection fraction: mechanisms, clinical features, and therapies.
               Circ Res. 2014 Jun 20;115(1):79-96. doi: 10.1161/CIRCRESAHA.115.302922.
        39.   Borlaug BA, Kass DA. Invasive hemodynamic assessment in  heart failure. Cardiol Clin 29 (2011) 269–280
               doi:10.1016/j.ccl.2011.03.003
        40.   Zile MR, Baicu CF, Iknomidis JS et al. Myocardial Stiffness in Patients With Heart Failure and a Preserved
               Ejection Fraction: Contributions of Collagen and Titin. Circulation. 2015; 131:1247–1259.
               doi:10.1161/CIRCULATIONAHA.114.013215.








                                                                                               CBAC Center Heartbeat | 11
   12   13   14   15   16   17   18   19   20   21   22