Page 38 - BacII 2011-2017 by Lim Seyha
P. 38

វិទយល័យសេម�ចឳ េខត�េស ម�ប                       36

                  (                       )        (                 )
                                   2    1             x + 2   2    1
          ង. lim   ln(x + 2) – ln x –  +   = lim   ln      –     +
             x→+∞                x + 2  4    x→+∞      x    x + 2  4
                                                   (  (    )          )
                                                          2    2     1
                                           = lim   ln 1 +   –      +
                                             x→+∞         x   x + 2  4
                                                     1    1
                                           = ln 1 – 0 +  =
                                                     4    4
                   (                      )
                                    2    1    1
               lim  ln(x + 2) – ln x –  +   =
             x→+∞                 x + 2  4    4
       II. ១. ក. គណនា z 1 + z 2 , z 1 + z 3 , (z 1 + z 2 )(z 1 + z 3 )
                         √         √          √
                យ z 1 =   2, z 2 = –i 2, z 3 = +i 2
                               √    ( √ )    √    √             √    √
                ើងបាន z 1 + z 2 =  2 + –i 2 =  2 – i 2  z 1 + z 2 =  2 – i 2

                               √     √             √     √
                      z 1 + z 3 =  2 + i 2  z 1 + z 3 =  2 + i 2
                                        ( √    √ ) ( √
                       (     ) (     )                   √ )      2
                       z 1 + z 2 z 1 + z 3 =  2 – i 2  2 + i 2 = 2 – i 2 = 4
                       (      ) (    )
                        z 1 + z 2 z 1 + z 3 = 4
                                                   (       ) 2
                                                    z 1 + z 3
             ខ. កំណត់ម៉ូឌុល និងអាគុយម៉ង់ z 1 + z 2 , z 1 + z 3 ,
                                                    z 1 + z 2
                                      √    √      (              )
                          √    √      2     2         7π      7π
               • z 1 + z 2 =            –   i = 2 cos  + i sin
                                               
                                               
                           2 – i 2 = 2 
                                       2    2           4        4
                                              
                                               7π        7π
                 ដូច  ះ ម៉ូឌុល r = 2 ; អាគុយម៉ង់ θ =  ឬ θ =  + 2kπ ; k ∈ Z
                                                4        4
                                       √    √ 
                          √    √       2            (   π      π  )
               • z 1 + z 3 =             + i  2   = 2 cos  + i sin
                                                
                                                
                           2 + i 2 = 2 
                                        2     2          4      4
                                               
                                               π        π
                 ដូច  ះ ម៉ូឌុល r = 2 ; អាគុយម៉ង់ θ =  ឬ θ =  + 2kπ ; k ∈ Z
                                               4        4
                 (      ) 2  (    (      )      (     )) 2     (    )      (    )
                  z 1 + z 3  2     π  7π         π  7π           –6π         –6π
               •          =    cos   –    + i sin  –     = cos 2     + i sin 2
                  z 1 + z 2  2     4   4         4   4            4           4
                               (   )      (   )     (       )     (       )
                          = cos –3π + i sin –3π = cos –4π + π + i sin –4π + π
                          = cos π + i sin π
     ចង�កងេ�យ ល ី ម ស ី �       �គ គណ ិ តវិទយវិទយល័យសេម�ចឳ          Tel: 012689353
   33   34   35   36   37   38   39   40   41   42   43