Page 96 - 30 Cantor
P. 96
EL INFINITO DE BOLZANO
El matemático Bernard Bolzano, nacido
en Praga en 1871. escribió Paradojas del
infinito, libro publicado póstumamente
en 1851. tres años después de su muerte.
En esa obra, Bolzano adelantó algunas
de las ideas que Cantor publicaría años
después, aunque no llegó a darse cuen-
ta de que existen diferentes niveles de
infinitud, ni logró tampoco desarrollar
una teoría coherente del infinito mate-
mático.
Cantor y Dedekind estuvieran ya de acuerdo en introducir en las
matemáticas conceptos conjuntistas? Desarrollemos con cuidado
las respuestas a estas dos preguntas.
Como relatamos en el capítulo anterior, en 1872 Cantor pu-
blicó un artículo en el que proponía una solución para el problema
del continuo; problema que, recordemos, pedía hallar una defini-
ción de los números reales que no apelara a conceptos geomé-
tricos. Es importante mencionar que ya por entonces Cantor era
consciente de que ese problema lo llevaría a considerar coleccio-
nes infinitas en acto.
En el mismo año, Dedekind publicó una solución para el pro-
blema del continuo similar a la de Cantor, basada en un concepto
hoy conocido como «cortaduras de Dedekind». Se entiende en-
tonces por qué en 1872 Cantor y Dedekind encontraron que tenían
mucho en común en cuanto a su modo de pensar las matemáticas.
Pero, como decía Cantor en la cita de 1883 que mostramos al
comienzo de este capítulo, hasta mediados de la década de 1880
tanto él como Dedekind admitían solan1ente colecciones forma-
das por números o por puntos geométricos, no por objetos cuales-
quiera. Las respuestas a las preguntas del inicio de este apartado
son, entonces, que aunque en la década de 1870 tanto Cantor
como Dedekind empleaban ya conceptos conjuntistas en sus tra-
96 LOS ORDINALES INFINITOS