Page 114 - Modul problem posing berorientasi stem
P. 114
′( ) = 200 − 120 + 12 . Menentukan titik kritis dengan ′( ) = 0 maka
diperoleh nilai dengan menggunakan rumus abc pada persamaan kuadrat
200 − 120 + 12 = 0 , yaitu , = ±√ = ± ,
, ,
= = 2,113 dan = = 7,89 ( tidak memenuhi ).
Masalah Laju yang Terkait (Related Problems)
Selanjutnya masalah yang menggunakan Turunan adalah Masalah laju
yang berkaitan ( Related problem ). Laju dapat diartikan sebagai perubahan
nilai suatu besaran(dimensi) terhadap perubahan waktu. Dalam related
problem akan dihitung laju perubahan suatu besaran dalam bentuk laju
perubahan besaran lain. Langkah-langkah penyelesaian related problem
juga menggunakan langkah-langkah Polya. Namun alat yang digunakan
lebih dominan materi Turunan Implisit.
Contoh 7.4
Udara dipompa dalam balon berbentuk bundar sehingga volumenya
bertambah pada laju 100cm /detik. Seberapa cepat jari-jari balon
3
bertambah pada garis tengahnya ( diameter ) ketika berukuran 50 cm?.
Jawab
Langkah 1 dan 2:
= 100 / akan ditentukan pada = 25, karena =
Jika balon ditiup maka mengikuti volume bola ,
=
Langkah 3 dan 4
Hubungkan antara dV dan dr dengan memperhatikan volume bola,
dt dt
selanjutkan Turunkan secara Implisit.
105