Page 60 - MTK SMK 10 TO ALI 2.tif
P. 60
BAB II Persamaan dan Pertidaksamaan 49
Sekarang melenyapkan variabel y untuk mencari x
x + 2y = 3 x 1 x + 2y = 3
3x − y = − 5 x 2 6x − 2y = − 10 +
7 x = − 7
x = − 1
Himpunan penyelesaian sistem persamaan linier tersebut adalah {(-1,2)}
Contoh 5
Tentukan himpunan penyelesaian dari ⎧ 3x + y = 5
⎨ 2x − y = 10
⎩
Jawab:
Karena koefisien y sudah sama sehingga untuk mencari x hanya mengeliminasi y
dengan cara menjumlahkannya
3x + y = 5
2x – y = 10 +
5x = 15
x = 3
Untuk mencari y kita eliminasi x dengan mengalikan kedua persamaan sehingga
koefisien x menjadi sama
3x + y = 5 x 2 6x + 2y = 10
2x − y = 10 x 3 6x − 3y = 30 −
5 y = 20
−
y = − 4
Jadi, himpunan penyelesaian sistem adalah {(3, -4)}
b. Metode Substitusi
Substitusi artinya mengganti atau menyatakan salah satu variabel dengan variabel
lainnya.
Contoh 6
⎧ x3
Tentukan himpunan penyelesaian dari + y = 5
⎨
⎩ 2 x − y =10
Jawab:
3x + y = 5 . . . 1)
2x – y = 10 . . . 2)
Misalkan yang akan disubstitusi atau diganti adalah variabel y pada persamaan 2),
maka persamaan 1) dinyatakan dalam bentuk y = 5 – 3x.
2x – y = 10
2x – (5 – 3x) = 10
2x – 5 + 3x = 10
5x – 5 = 10
5x = 10 + 5
5x = 15 ⇔ x = 3
Selanjutnya x = 3 disubstitusikan ke y = 5 – 3x
= 5 – 3(3) = -4
Jadi, himpunan penyelesaian tersebut adalah {(3, -4)}