Page 95 - BacII 2011-2017 by Lim Seyha
P. 95

វិទយល័យសេម�ចឳ េខត�េស ម�ប                       93


                                       [ដំេ�ះ��យ]

        I. គណនាលីមីត៖
                               3
                                                                 3
                   3
                (       )                                     (       )
           ក. lim 3x – 4x = 3(1) – 4(1) = 3 – 4 = –1  ដូច  ះ  lim 3x – 4x = –1
             x→1                                           x→1
                    3
                   x – 8                   0
          ខ. lim √          ( មានរាងមិនកំណត់  0  )
             x→2  x + 2 – 2
                     (     )    ( √       )            (          ) ( √      )
                       3
                                                         2
                     x – 2 3      x + 2 + 2       (x – 2) x + 2x + 4  x + 2 + 2
             = lim ( √       ) × ( √      ) = lim
               x→2    x + 2 – 2   x + 2 + 2   x→2          (x + 2) – 4
                   (         ) ( √       )  (          ) ( √       )
                                              2
                     2
             = lim x + 2x + 4    x + 2 + 2 = 2 + 2 · 2 + 4  2 + 2 + 2 = 48
               x→2
                           3
                          x – 8
             ដូ    ះ  lim √      = 48
                    x→2   x + 2 – 2
                  (       )
           គ. lim  ln x – x 2  (មានរាងមិនកំណត់ +∞ – ∞)
             x→+∞
                       ( ln x  )
             = lim x  2     – 1 = +∞(0 – 1) = –∞
               x→+∞      x 2
                         (     2  )
             ដូច  ះ  lim  ln x – x  = –∞
                   x→+∞
       II. គណនាអាំង     ល
                ∫               [     3  ] 2
                  2 (     )          x            (    )
                                               3
                         2
           ក. I =   1 – 3x dx = x – 3    = 2 – 2 – 1 – 1 3  = 2 – 8 = –6  ដូច  ះ I = –6
                 1                   3  1
                   3  1      3         x –2+1      1      1    1
                ∫          ∫          [      ] 3  [  ] 3     (  )
                                –2
             J =      dx =     x dx =          = –     = – – –
                  2 x 2     2          –2 + 1  2   x  2   3    2
          ខ.
                 –2 + 3  1              1
              =        =      ដូច  ះ J =
                   6     6              6
                   1   1
                 ∫  (        )
           គ. K =         – 1 dx = ln |x + e| – x ] 1 0  = ln |1 + e| – 1 – ln |0 + e| – 0 )
                                                             (
                                  [
                  0  x + e
               = ln(1 + e) – 1 – ln e = ln(1 + e) – 1 – 1 = ln(1 + e) – 2
              ដូច  ះ K = ln(1 + e) – 2
     ចង�កងេ�យ ល ី ម ស ី �       �គ គណ ិ តវិទយវិទយល័យសេម�ចឳ          Tel: 012689353
   90   91   92   93   94   95   96   97   98   99   100