Page 85 - BUKU ARA
P. 85
)
lim f ( x L c
x a
)
lim f ( x L b
x a
lim f ( x) tidak terdefinis i karena L L
x a
Gambar 2.9
f(a) = b
)
lim f ( x L c
x a
lim f ( x L b
)
x a
lim f ( x) tidak terdefinis i karena L L
x a
Gambar 2.10
f(a) = b
lim f ( x L b
)
x a
)
lim f ( x L b
x a
lim f ( x) b, karena L L
x a
Definisi :
Jika y f (x ) terdefinisi dalam suatu selang terbuka yang memuat c, maka y f (x ) dikatakan
kontinu di x = c, asalkan :
f(c) = L (ada)
lim f (x ) L (ada )
x c
lim f (x ) f (c ) L (ada )
x c
Tugas Rutin ( Collaboration)
Diskusikan di kelas (Kelompok Mahasiswa)
1. Buktikan : Jika f kontinu pada (a,b) dan jika f’(x) ada dan memenuhi f’(x) > 0
kecuali pada suatu titik x 0 dalam (a,b), maka f menaik pada (a,b).
80