Page 44 - E-MODUL MATEMATIKA DASAR
P. 44
Deret Geometri
Jika suku-suku dari suatu barisan geometri dijumlahkan, maka akan terbentuk
deret geometri. Bentuk umum dari barisan geometri yaitu:
U1 + U2 + U3 + . . .+ Un atau
2
a + ar + ar + . . .+ ar n-1
Rumus jumlah n suku pertama deret geometri adalah:
n
Sn = a( 1− r ) untuk ,r 1 ,
1
r
1− r
Sn = a(r n − 1) untuk r 1 1
,r
r − 1
Keterangan :
a = suku awal
r = rasio
n = banyak suku
Sn = jumlah n suku yang pertama
Contoh 7.4
1) Tentukan jumlah dari barisan 3, 6, 12, 24, 48, ..., U10!
2) Hitunglah jumlah enam suku pertama pada deret geometri 256 – 64 + 16 –
…
Penyelesaian
1) a = 3 r = 2
Karena r > 1, maka:
n
a(r − 1)
S n = r − 1
3(2 − ) 1
n
=
2 − 1
= 3(2 n - 1)
S 10 3 = (2 10 - 1)
3 = (1.024 - 1)
3 = (1.023) = 3.069
2) 256 – 64 + 16 - …, deret geometri dengan suku pertama a = 256 dan rasio
1
r = −
4
40