Page 17 - BacII 2011-2017 by Lim Seyha
P. 17

វិទយល័យសេម�ចឳ េខត�េស ម�ប                       15


                                       [ដំេ�ះ��យ]

        I. គណនាលីមីត៖
                   1 – x 2
                                          0
           ក. lim           (មានរាងមិនកំណត់ )
                  2
             x→1 x + 2 – 3x               0
                   (1 – x)(1 + x)    –(x – 1)(1 + x)    –(1 + x)  –(1 + 1)
             = lim             = lim              = lim         =         = 2
               x→1 (x – 1)(x – 2)  x→1 (x – 1)(x – 2)  x→1  x – 2   1 – 2

                         1 – x 2
             ដូច  ះ lim          = 2
                        2
                   x→1 x + 2 – 3x
                 √
                  x + 6 – 3
                                          0
          ខ. lim            (មានរាងមិនកំណត់ )
                                          0
                   3
             x→3  x – 27
                   ( √       ) ( √      )
                      x + 6 – 3  x + 6 + 3                x + 6 – 9
             = lim   (     ) ( √      )  = lim       (         ) ( √       )
                       3
               x→3   x – 3 3   x + 6 + 3    x→3  (x – 3) x + 3x + 9  x + 6 + 3
                                                       2
                              1                      1            1
             = lim (          ) ( √      ) =          ( √    ) =
                     2
               x→3  x + 3x + 9   x + 6 + 3   (9 + 9 + 9)  9 + 3  162
                       √
                        x + 6 – 3   1
             ដូច  ះ lim         =
                         3
                   x→3  x – 27     162
                 5 sin 5x
                                       0
           គ. lim        (មានរាងមិនកំណត់ )
                                       0
             x→0   x
                      sin 5x                        5 sin 5x
             = lim 25 ·     = 25 × 1 = 25  ដូច  ះ  lim     = 25
               x→0      5x                       x→0   x
       II. គណនា z 1 + z 2 , (z 1 + z 2 ) × z 3
                     √             (  √ )   (   √ )          1
          ើងមាន z 1 =  3 – i ;  z 2 = 1 –  3 + 1 –  3 i ;  z 3 = –
                                                             2
                  √          √      √        √                     √
         z 1 + z 2 =  3 – i + 1 –  3 + i –  3i = 1 –  3i ដូច  ះ z 1 + z 2 = 1 –  3i
                                           √                              √
                               (   )
                        (  √ )   1     1     3                        1    3
          (     )                                      (     )
          z 1 + z 2 × z 3 = 1 –  3i –  = – +  i ដូច  ះ z 1 + z 2 × z 3 = – +  i
                                 2     2    2                         2    2




     ចង�កងេ�យ ល ី ម ស ី �       �គ គណ ិ តវិទយវិទយល័យសេម�ចឳ          Tel: 012689353
   12   13   14   15   16   17   18   19   20   21   22